当前位置: 首页 > news >正文

【Python】python读取,显示,保存图像的几种方法

一、PIL:Python Imaging Library(pillow)

PIL读取图片不直接返回numpy对象,可以用numpy提供的函数np.array()进行转换,亦可用Image.fromarray()再从numpy对象转换为原来的Image对象,读取,显示,保存以及数据格式转换方法见如下代码:

from PIL import Image
import numpy as npimagepath = 'img.jpg' 
image = Image.open(imagepath)
image.show()
image.save('img1.jpg') # 图片保存在项目文件夹下

二,Matplotlib

读取,显示,保存方法见如下代码:

import matplotlib.pyplot as plt
import matplotlib.image as mpimgimagepath = 'img.jpg'
image = mpimg.imread(imagepath)
# 显示图片
plt.imshow(image)
# 保存文件
mpimg.imsave("cat1.jpg", image)

三,OpenCV

1.直接将图像显示在窗口中,并保存。

import cv2
import matplotlib.pyplot as pltimagepath = 'img.jpg'
image = cv2.imread(imagepath)# 保存图片
cv2.imwrite("cat2.jpg", image)# 显示图片
cv2.imshow('bgrImage', image) # 对窗口进行命名并显示
cv2.waitKey()
cv2.destroyAllWindows()

 

2.放置在画布中显示

import cv2
import matplotlib.pyplot as plt# 设置图片路径
imagepath = 'img.jpg'
image = cv2.imread(imagepath)# 将BGR图像转换为RGB
img_1 = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)# 显示图形
plt.subplot() # 直接指定划分方式和位置
plt.imshow(image)    #显示图像
plt.title('噪声图像')    # 设置标题
plt.xticks([]), plt.yticks([])    # 设置坐标轴,参数[]是不显示坐标轴
plt.show()

 由于opencv默认读取图片用的是BGR通道,所以后续处理如果用RGB通道,如matplotlib就是采用的RBG通道,则需要进行色彩转换,否则会因为不兼容导致色彩出现偏差,所以可以加上这一行代码 :

image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB),

 具体原因见我的一篇博客:【Bug】当用opencv库的imread()函数读取图像,用matplotlib库的plt.imshow()函数显示图像时,图像色彩出现偏差问题的解决方法-CSDN博客

 当要显示多张图片的时候,需要用plt.subplot()函数对画布区域进行划分,如果没有指定参数,则默认为一个子图。详细用法见我的博客:【Python】Matplotlib-多张图像的显示-CSDN博客

显示效果如下: 

 

相关文章:

【Python】python读取,显示,保存图像的几种方法

一、PIL:Python Imaging Library(pillow) PIL读取图片不直接返回numpy对象,可以用numpy提供的函数np.array()进行转换,亦可用Image.fromarray()再从numpy对象转换为原来的Image对象,读取,显示&…...

k8s系列-kuboard 该操作平台的使用操作

文章目录 一、相关平台,以及账号和密码镜像打包服务器仓库地址K8s平台数据库mysql 二、平台概述1.集群导入2.集群管理3.名称空间4.访问控制授权5.集群用户操作审计 三、kuboard平台操作手册一、部署服务操作1.名称空间部署2.工作负载部署 一、相关平台,以…...

基于讯飞星火大语言模型开发的智能插件:小策问答

星火大语言模型是一种基于深度学习的自然语言处理技术,它能够理解和生成人类语言。这种模型的训练过程涉及到大量的数据和复杂的算法,但最终的目标是让机器能够像人一样理解和使用语言。 小策问答是一款基于星火大语言模型的定制化GPT插件小工具。它的主…...

笔记:AI量化策略开发流程-基于BigQuant平台(二)

五、模型训练股票预测 完成了数据处理,接下来就可利用平台集成的各算法进行模型训练和模型预测啦。本文将详细介绍“模型训练”、“模型预测”两大模块操作、原理。 模型训练和模型预测是AI策略区别于传统量化策略的核心,我们通过模型训练模块利用训练…...

100127. 给小朋友们分糖果 II

给你两个正整数 n 和 limit 。 请你将 n 颗糖果分给 3 位小朋友,确保没有任何小朋友得到超过 limit 颗糖果,请你返回满足此条件下的 总方案数 。 示例 1: 输入:n 5, limit 2 输出:3 解释:总共有 3 种方…...

【2】Spring Boot 3 项目搭建

目录 【2】Spring Boot 3 初始项目搭建项目生成1. 使用IDEA商业版创建2. 使用官方start脚手架创建 配置与启动Git版本控制 个人主页: 【⭐️个人主页】 需要您的【💖 点赞关注】支持 💯 【2】Spring Boot 3 初始项目搭建 项目生成 1. 使用IDEA商业版创…...

【第七章】软件设计师 之 程序设计语言与语言程序处理程序基础

文章底部有个人公众号:热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享? 踩过的坑没必要让别人在再踩,自己复盘也能加深记忆。利己利人、所谓双赢。 1、前言 正规式 2、编译过程 编译型&…...

如何判断一个角是否大于180度(2)

理论计算见上一篇: 如何判断一个角是否大于180度?_kv1830的博客-CSDN博客 此篇为代码实现 一。直接上代码: import cv2 as cv import numpy as np import mathdef get_vector(p_from, p_to):return p_to[0] - p_from[0], p_to[1] - p_from…...

ASAM OpenDRIVE V1.7协议超详解(一)

文章目录 前言一、仿真场景的构成二、openDRIVE框架三、g_additionalData四、openDRIVE-header五、openDRIVE-road1、Road总拓扑结构2、Road-link介绍1)link的拓扑结构2)link链接示例3)link前继后继4)道路link规则 3、road-type介…...

springboot的配置信息的设置和读取(application.properties/application.yml)

springboot提供了两种配置信息的文件格式,application.properties和application.yml,基于直接明了,使用方便和高效的前提下下面的配置均采用yml格式配置, 注意 yml采用缩减方式来排列键后面紧跟冒号,然后空格&#x…...

Deepsort项目详解

一、目标追踪整体代码 代码目录如下图所示: 、 追踪相关代码: 检测相关代码和权重 调用 检测 和 追踪的代码: 首先代码分为三个部分: 目标追踪的相关代码和权重目标检测相关代码和权重,这里用的是yolov5.5目标检…...

C语言证明一个偶数总能表示为两个素数之和。输入一个偶数并将其分解为两个素数

完整代码&#xff1a; // 一个偶数总能表示为两个素数之和。输入一个偶数并将其分解为两个素数#include<stdio.h>//判断一个数n是否为素数 int isPrimeNumber(int n){//1不是素数if (n1){return 0;}for (int i 2; i <(n/2); i){//当有n能被整除时&#xff0c;不是素…...

Python 的 datetime 模块

目录 简介 一、date类 &#xff08;一&#xff09;date 类属性 &#xff08;二&#xff09;date 类方法 &#xff08;三&#xff09;实例属性 &#xff08;四&#xff09;实例的方法 二、time类 &#xff08;一&#xff09;time 类属性 &#xff08;二&#xff09;tim…...

Termius for Mac:掌控您的云端世界,安全高效的SSH客户端

你是否曾经在Mac上苦苦寻找一个好用的SSH客户端&#xff0c;让你能够远程连接到Linux服务器&#xff0c;轻松管理你的云端世界&#xff1f;现在&#xff0c;我们向你介绍一款强大而高效的SSH客户端——Termius。 Termius是一款专为Mac用户设计的SSH客户端&#xff0c;它提供了…...

Ubuntu 下监控并自动重启网卡

很多时候网站服务器挂掉也可能是因为网卡挂掉了&#xff0c;如果你网站不能访问时 SSH 也无效了一般都是这个问题。这时可以通过一个定时脚本监控网络并进行自动重启。 1 创建脚本 auto_restart_network.sh 4 5 6 7 8 9 #!/bin/bash ping www.baidu.com -c 1 >/dev/null i…...

377. 组合总和 Ⅳ

给你一个由 不同 整数组成的数组 nums &#xff0c;和一个目标整数 target 。请你从 nums 中找出并返回总和为 target 的元素组合的个数。 题目数据保证答案符合 32 位整数范围。 示例 1&#xff1a; 输入&#xff1a;nums [1,2,3], target 4 输出&#xff1a;7 解释&#…...

【OpenCV】计算视频的光流并跟踪物体calcOpticalFlowPyrLK

一、介绍 计算光流可以使用OpenCV的calcOpticalFlowPyrLK方法&#xff0c;cv2.calcOpticalFlowPyrLK是OpenCV库中的一个函数&#xff0c;用于计算稀疏光流。它实现的是Lucas-Kanade方法&#xff0c;这是一种常用的光流计算方法。 光流是图像中物体运动的近似表示&#…...

C语言进阶

数组 在基础篇说过&#xff0c;数组实际上是构造类型之一&#xff0c;是连续存放的。 一维数组 定义 定义格式&#xff1a;[存储类型] 数据类型 数组名标识符[下标]; 下面分模块来介绍一下数组的定义部分的内容。 1、初始化和元素引用&#xff1a; 可以看到数组是连续存储…...

Linux之gdb

gdb就是一个Linux的调试工具&#xff0c;类似与vs里面的调试 可执行程序也有格式&#xff0c;不是简单的二进制堆砌...

100天精通风控建模(原理+Python实现)——第3天:风控建模中如何处理缺失值?

风控模型已在各大银行和公司都实际运用于业务,用于营销和风险控制等。    之前已经阐述了100天精通风控建模(原理+Python实现)——第1天:什么是风控建模?    100天精通风控建模(原理+Python实现)——第2天:风控建模有什么目的?    接下来看下100天精通风控建模(原理…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

【决胜公务员考试】求职OMG——见面课测验1

2025最新版&#xff01;&#xff01;&#xff01;6.8截至答题&#xff0c;大家注意呀&#xff01; 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:&#xff08; B &#xff09; A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

Reasoning over Uncertain Text by Generative Large Language Models

https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...