当前位置: 首页 > news >正文

机器学习——奇异值分解案例(图片压缩-代码简洁版)

本想大迈步进入前馈神经网络
但是…唉…瞅了几眼,头晕
然后想到之前梳理的奇异值分解、主成分分析、CBOW都没有实战
如果没有实际操作,会有一种浮在云端的虚无感
但是如果要实际操作,我又不想直接调用库包
可是…如果不直接调包,感觉自己又像是在造轮子造螺丝,明明别人都已经造好了,为什么还要自己造一遍呢
意义何在?
这又让我回想当初开始机器学习的初衷:消磨时间
既然初衷至今没变,那就不应该求快,应该尽可能合格专业地磨洋工
生活本就没有意义,再加快脚步,又有什么意义呢?
slow down
好叭,那就慢慢来,自己造个破破烂烂的轮子,也能敝帚自珍

通过奇异值分解,来压缩图片

这就需要opencv来获取图片的RGB信息。

import cv2
img = cv2.imread("crab.png", 1)
print(img)

首先,获取到的图片信息是个嵌套数组,一般每个像素表示一个向量,这个向量里含有RGB三个数值

获取到的颜色信息数据,是个嵌套数组,并不是奇异值分解中的标准矩阵形式
在这里插入图片描述

因此,我们需要将RGB这三个颜色通道的数据拆分开,变成三个矩阵

  • 矩阵1:表示红色通道的图片信息
  • 矩阵2:表示绿色通道的图片信息
  • 矩阵3:表示蓝色通道的图片信息
b,g,r = cv2.split(img)

算了,还是直接给出完整代码吧

import cv2
import numpy as np# 前k个sigma
k = 1000# 读取三通道颜色
img = cv2.imread("img1.png", 1)
colors = cv2.split(img)new_colors = []
for c in colors:# 奇异值分解u, sigma, v = np.linalg.svd(c, full_matrices=0)u = u[:,:k] # 获取U的前k列sigma = np.diag(sigma[:k]) # 奇异值是一个一维向量,将奇异值构造成对角矩阵v = v[:k,:] # 获取V的前k行# 组建压缩后的新矩阵a = np.matmul(u,sigma)new_c = np.matmul(a,v)"""转型!!!很重要!!!!因为矩阵计算后是float型,float型在cv2的显示有很大问题!!!!!!!!!!"""new_c = new_c.astype('uint8')new_colors.append(new_c)# 展示原图与压缩图片
cv2.imshow("img-old", cv2.merge(colors))
cv2.imshow("img-new", cv2.merge(new_colors))
cv2.waitKey(0)

这是k=1000时的对比在这里插入图片描述
这是k=100时的样子
在这里插入图片描述
K的取值范围,是基于sigma奇异值的个数范围内
因此,有些人为了避免自己k值设置超出范围报错,可以加以限制
但我被下边的bug烦了4个小时,有些气恼,懒得搞了

找了4个小时的bug!!!!!!居然是没有将float转为整数!!!含恨吐血

new_c = new_c.astype('uint8')

没有转型,就会变成下边这样,。,。。。。鬼样!!
在这里插入图片描述
在这里插入图片描述

相关文章:

机器学习——奇异值分解案例(图片压缩-代码简洁版)

本想大迈步进入前馈神经网络 但是…唉…瞅了几眼,头晕 然后想到之前梳理的奇异值分解、主成分分析、CBOW都没有实战 如果没有实际操作,会有一种浮在云端的虚无感 但是如果要实际操作,我又不想直接调用库包 可是…如果不直接调包,感…...

【Go入门】面向对象

【Go入门】面向对象 前面两章我们介绍了函数和struct,那你是否想过函数当作struct的字段一样来处理呢?今天我们就讲解一下函数的另一种形态,带有接收者的函数,我们称为method method 现在假设有这么一个场景,你定义…...

Asp.Net Core 中使用配置文件

本文参考微软文档:ASP.NET Core 中的配置 ASP.NET Core 中的应用程序配置是使用一个或多个配置程序提供程序执行的。 配置提供程序使用各种配置源从键值对读取配置数据: 设置文件,例如 appsettings.json环境变量Azure Key VaultAzure 应用配…...

深入理解JVM虚拟机第二十四篇:详解JVM当中的动态链接和常量池的作用

大神链接:作者有幸结识技术大神孙哥为好友,获益匪浅。现在把孙哥视频分享给大家。 孙哥链接:孙哥个人主页 作者简介:一个颜值99分,只比孙哥差一点的程序员 本专栏简介:话不多说,让我们一起干翻J…...

QGridLayout

QGridLayout QGridLayout 是 Qt 框架中的一个布局管理器类,用于在窗口或其他容器中创建基于网格的布局。 QGridLayout 将窗口或容器划分为行和列的网格,并将小部件放置在相应的单元格中。可以通过调整行、列和单元格的大小来控制布局的样式和结构。 以…...

万能在线预约小程序系统源码 适合任何行业在线预约小程序+预约到店模式 带完整的搭建教程

大家好啊,源码小编又来给大家分享啦!随着互联网的发展和普及,越来越多的服务行业开始使用在线预约系统以方便客户和服务管理。例如,美发店、健身房、餐厅等都可以通过在线预约系统提高服务效率,减少等待时间&#xff0…...

Leetcode 2935. Maximum Strong Pair XOR II

Leetcode 2935. Maximum Strong Pair XOR II 1. 解题思路2. 代码实现 题目链接:2935. Maximum Strong Pair XOR II 1. 解题思路 这一题又是一个限制条件下找“最大值”的问题,不过这里的最大值是XOR之后的最大值。 而要求XOR之后结果的最大值&#x…...

[直播自学]-[汇川easy320]搞起来(4)看文档 查找设备(续)

2023.11.12 周六 19:05 补充一下关于以太网查找设备,如果设置如下: 然后点击测试: 点击ping 如果设置如下: 测试和ping和上图一样。 这就设计的有点不大好了! 另…...

WebSphere Liberty 8.5.5.9 (四)

WebSphere Liberty 8.5.5.9 (四) [WebSphere Liberty 8.5.5.9]Linux 环境 ~$ unzip wlp-webProfile7-java8-linux-x86_64-8.5.5.9.zip ./ ~$ mkdir wlp-webProfile7-java8-8559 ~$ mv wlp ./wlp-webProfile7-java8-8559启动 WebSphere Liberty 8.5.5.9 服务 ~$ cd /home/tes…...

UE特效案例 —— 角色刀光

目录 一,环境配置 二,场景及相机设置 三,效果制作 刀光制作 地裂制作 击打地面炸开制作 一,环境配置 创建默认地形Landscape,如给地形上材质需确定比例;添加环境主光源DirectionalLight,设…...

11. EPIC定时器

11. EPIC定时器 EPIT定时器简介EPIT定时器结构分析EPIT 定时器相关寄存器EPITx_CREPITx_SREPITx_LR 加载寄存器EPITx_CMPR 比较寄存器EPITx_CNR 计数寄存器 EPIT 配置步骤 例程代码编写bsp_epittimer.hbsp_epittimer.cmain.c EPIT定时器简介 EPIT定时器是增强的周期中断定时器…...

git-bash配置代理

git-bash命令提交执行命令: "git push origin main"时发生错误: “$ git push origin main fatal: unable to access ‘https://github.com/satadriver/locust_server.git/’: Failed to connect to github.com port 443 after 21035 ms: Couldn’t connect to serve…...

【ElasticSearch系列-07】ES的开发场景和索引分片的设置及优化

ElasticSearch系列整体栏目 内容链接地址【一】ElasticSearch下载和安装https://zhenghuisheng.blog.csdn.net/article/details/129260827【二】ElasticSearch概念和基本操作https://blog.csdn.net/zhenghuishengq/article/details/134121631【三】ElasticSearch的高级查询Quer…...

JavaWeb Day09 Mybatis-基础操作02-XML映射文件动态SQL

目录 Mybatis动态SQL介绍​编辑 一、案例 ①Mapper层 ②测试类 ③EmpMapper.xml ④结果​ 二、标签 (一)if where标签 ​①EmpMapper.xml ②案例 ③总结 (二)foreach标签 ①SQL语句 ②Mapper层 ③EmpMapper.xml ④…...

CV学习基础

脸部检测是基于图像的明暗变化模式进行判断,需要将图像先进行灰度化处理 马赛克处理需先将图像缩小然后夸大回原尺寸。 保存训练好的算法用joblib 进行以下操作时已经使用cv2.cvtColor()完成了灰度化 图像平滑化(模糊处理):cv…...

设计模式之禅之设计模式-原型模式

设计模式之禅之设计模式-原型模式 一:原型模式的定义 ​ 用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。 ​ 原型模式(Prototype Pattern)的简单程度仅次于单例模式和迭代器模式。正是由于简单,使用的场景才非常地多。 ​ 原型模式的核心是一…...

Spring的循环依赖问题

文章目录 1.什么是循环依赖2.代码演示3.分析问题4.问题解决5.Spring循环依赖6. 疑问点6.1 为什么需要三级缓存6.2 没有三级缓存能解决吗?6.3 三级缓存分别什么作用 1.什么是循环依赖 上图是循环依赖的三种情况,虽然方式有点不一样,但是循环依…...

RT-DETR算法改进:更换损失函数DIoU损失函数,提升RT-DETR检测精度

💡本篇内容:RT-DETR算法改进:更换损失函数DIoU损失函数 💡本博客 改进源代码改进 适用于 RT-DETR目标检测算法(ultralytics项目版本) 按步骤操作运行改进后的代码即可🚀🚀🚀 💡改进 RT-DETR 目标检测算法专属 文章目录 一、DIoU理论部分 + 最新 RT-DETR算法…...

【ICE】2:基于webrtc的 ice session设计及实现

工厂函数:CreateICESession_t 外部声明,sdk内部实现。创建IICESession :外部可见,内部也可见 /// Factory function prototype. How you get this factory will depend on how you are linking with /// this code. typedef IICESession *( *CreateICESession_t )( const…...

Vue组件传

跟禹神学vue--总结 1 父组件给子组件传递参数--props传参 (1)父组件中准备好数据 data() {return {todos:[{id:001,title:01,done:true},{id:002,title:02,done:false},{id:003,title:03,done:true}]} } (2)父组件中引入子组件…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好&#xff0c;总是藏在那些你咬牙坚持的日子里。 硬件&#xff1a;OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写&#xff0c;"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...