当前位置: 首页 > news >正文

深度学习AI识别人脸年龄

以下链接来自 @落痕的寒假

GitHub - luohenyueji/OpenCV-Practical-Exercise: OpenCV practical exercise

GitHub - luohenyueji/OpenCV-Practical-Exercise: OpenCV practical exercise

import cv2 as cv
import time
import argparsedef getFaceBox(net, frame, conf_threshold=0.7):frameOpencvDnn = frame.copy()frameHeight = frameOpencvDnn.shape[0]frameWidth = frameOpencvDnn.shape[1]blob = cv.dnn.blobFromImage(frameOpencvDnn, 1.0, (300, 300), [104, 117, 123], True, False)net.setInput(blob)detections = net.forward()bboxes = []for i in range(detections.shape[2]):confidence = detections[0, 0, i, 2]if confidence > conf_threshold:x1 = int(detections[0, 0, i, 3] * frameWidth)y1 = int(detections[0, 0, i, 4] * frameHeight)x2 = int(detections[0, 0, i, 5] * frameWidth)y2 = int(detections[0, 0, i, 6] * frameHeight)bboxes.append([x1, y1, x2, y2])cv.rectangle(frameOpencvDnn, (x1, y1), (x2, y2), (0, 255, 0), int(round(frameHeight/150)), 8)return frameOpencvDnn, bboxesparser = argparse.ArgumentParser(description='Use this script to run age and gender recognition using OpenCV.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')args = parser.parse_args()faceProto = "age_gender/model/opencv_face_detector.pbtxt"
faceModel = "age_gender/model/opencv_face_detector_uint8.pb"ageProto = "age_gender/model/age_deploy.prototxt"
ageModel = "age_gender/model/age_net.caffemodel"genderProto = "age_gender/model/gender_deploy.prototxt"
genderModel = "age_gender/model/gender_net.caffemodel"MODEL_MEAN_VALUES = (78.4263377603, 87.7689143744, 114.895847746)
ageList = ['(0-2)', '(4-6)', '(8-12)', '(15-20)', '(25-32)', '(38-43)', '(48-53)', '(60-100)']
genderList = ['Male', 'Female']# Load network
ageNet = cv.dnn.readNet(ageModel, ageProto)
genderNet = cv.dnn.readNet(genderModel, genderProto)
faceNet = cv.dnn.readNet(faceModel, faceProto)# Open a video file or an image file or a camera stream
cap = cv.VideoCapture(args.input if args.input else 0)
padding = 20
while cv.waitKey(1) < 0:# Read framet = time.time()hasFrame, frame = cap.read()if not hasFrame:cv.waitKey()breakframeFace, bboxes = getFaceBox(faceNet, frame)if not bboxes:print("No face Detected, Checking next frame")continuefor bbox in bboxes:# print(bbox)face = frame[max(0,bbox[1]-padding):min(bbox[3]+padding,frame.shape[0]-1),max(0,bbox[0]-padding):min(bbox[2]+padding, frame.shape[1]-1)]blob = cv.dnn.blobFromImage(face, 1.0, (227, 227), MODEL_MEAN_VALUES, swapRB=False)genderNet.setInput(blob)genderPreds = genderNet.forward()gender = genderList[genderPreds[0].argmax()]# print("Gender Output : {}".format(genderPreds))print("Gender : {}, conf = {:.3f}".format(gender, genderPreds[0].max()))ageNet.setInput(blob)agePreds = ageNet.forward()age = ageList[agePreds[0].argmax()]print("Age Output : {}".format(agePreds))print("Age : {}, conf = {:.3f}".format(age, agePreds[0].max()))label = "{},{}".format(gender, age)cv.putText(frameFace, label, (bbox[0], bbox[1]-10), cv.FONT_HERSHEY_SIMPLEX, 0.8, (0, 255, 255), 2, cv.LINE_AA)cv.imshow("Age Gender Demo", frameFace)# cv.imwrite("age-gender-out-{}".format(args.input),frameFace)print("time : {:.3f}".format(time.time() - t))
  1. 导入必要的模块:

    • cv2:用于图像处理和显示
    • time:用于计时
    • argparse:用于解析命令行参数
  2. 定义函数 getFaceBox 用于检测人脸框:

    • 通过 DNN 模型进行人脸检测,筛选出置信度高于阈值的人脸框,并在原图上绘制矩形框。
  3. 使用 argparse 解析命令行参数:

    • 支持从图像或视频文件中读取,如果没有指定输入则使用摄像头捕获。
  4. 定义人脸检测和年龄、性别识别模型的路径:

    • faceProto 和 faceModel 是人脸检测模型的配置文件和权重文件的路径。
    • ageProto 和 ageModel 是年龄识别模型的配置文件和权重文件的路径。
    • genderProto 和 genderModel 是性别识别模型的配置文件和权重文件的路径。
  5. 加载模型:

    • 使用 cv.dnn.readNet 加载人脸检测、年龄识别和性别识别模型。
  6. 打开视频文件或图像文件或者摄像头流,并设置填充值:

    • 使用 cv.VideoCapture 打开视频文件或图像文件或者摄像头流,并设置填充值为 20。
  7. 在循环中处理每帧图像:

    • 读取一帧图像,然后调用 getFaceBox 函数检测人脸框。
    • 对检测到的人脸框进行处理,提取人脸区域,并使用年龄和性别模型进行识别。
    • 将识别结果标记在图像上并显示。

 

相关文章:

深度学习AI识别人脸年龄

以下链接来自 落痕的寒假 GitHub - luohenyueji/OpenCV-Practical-Exercise: OpenCV practical exercise GitHub - luohenyueji/OpenCV-Practical-Exercise: OpenCV practical exercise import cv2 as cv import time import argparsedef getFaceBox(net, frame, conf_thresh…...

兔队线段树维护后缀非严格递增子序列的哈希值:CCPC2023深圳K

https://vjudge.net/contest/594134#problem/K 场上想到如果两个序列的后缀非严格递增子序列相同则平局&#xff0c;但不知道怎么维护 发现不用输出谁赢&#xff0c;只用判断是否平局&#xff0c;所以肯定是判断两个东西是否相等 然后如果单纯维护后缀非严格递增子序列&#…...

Django框架FAQ

文章目录 问题1:Django数据库恢复问题2:null和blank的区别3.报错 django.db.utils.IntegrityError: (1062, “Duplicate entry ‘‘ for key ‘mobile‘“)4.报错 Refused to display ‘url‘ in a frame because it set ‘X-Frame-Options‘ to deny5.报错 RuntimeError: cryp…...

chinese-hanfu-sd1.5-v30 训练日记

chinese-hanfu-sd1.5-v30 训练日记 训练数据&#xff1a; found directory /dataset/train_dataset2/chinese-hanfu-sd1-v30/img/10_ohxm woman contains 2465 image files found directory /dataset/train_dataset2/chinese-hanfu-sd1-v30/img/10_khs woman contains 8220 im…...

【Redis系列】Redis的核心命令(上)

哈喽&#xff0c;大家好&#xff0c;我是小浪。那么上篇博客教会了大家如何在Linux上安装Redis&#xff0c;那么本篇博客就要正式开始学习Redis啦&#xff0c;跟着俺的随笔往下看~ 1、启动Redis 那么如何启动Redis呢&#xff1f;最常用的是以下这个命令&#xff1a; redis-cl…...

鸿蒙 API9 接入 Crypto库

鸿蒙 API9 接入 Crypto库 开发环境 API9。 参考文档 之前研究了半天鸿蒙自身支持的算法库&#xff0c;只能说集成起来还是比较麻烦的&#xff0c;不如开箱即用的npm crypto好用。不过之前也没想到三方库会这么快的适配鸿蒙&#xff0c;毕竟小程序都多少年了&#xff0c;各种…...

Halcon WPF 开发学习笔记(2):Halcon导出c#脚本和WPF初步开发

文章目录 前言HalconC#教学简单说明如何二开机器视觉如何二次开发Halcon导出Halcon脚本新建WPF项目&#xff0c;导入Halcon脚本和Halcon命名空间 前言 我目前搜了一下我了解的机器视觉软件&#xff0c;有如下特点 优点缺点兼容性教学视频(B站前三播放量)OpenCV开源&#xff0…...

红队专题-从零开始VC++C/S远程控制软件RAT-MFC-超级终端

红队专题 招募六边形战士队员[16]超级终端(1) 招募六边形战士队员 一起学习 代码审计、安全开发、web攻防、逆向等。。。 私信联系 [16]超级终端(1) 服务端 — 本地打开cmd — 接收命令 — 执行 — 发送回显 客户端 — 远端发送命令 — 接收回显 发送开启cmd命令 --- 接受…...

ROS机器人毕业论文数量井喷-数据日期23年11月13日

背景 ROS机器人论文数量在近3年井喷发展&#xff0c;仅硕士论文知网数据库可查阅就已经达到2264篇&#xff0c;实际相关从业者远远远大于这个数值。 按日期排序&#xff0c;每页20篇&#xff0c;23年还未结束&#xff0c;检索本身也不一定完备&#xff0c;就超过200。 相关从业…...

BIO、NIO、AIO之间有什么区别

文章目录 BIO优缺点示例代码 NIO优缺点示例代码 AIO优缺点示例代码 总结 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网站。 BIO、NIO和AIO是Java编程语言中用于处理输入输出&#xff08;IO…...

强烈建议linux中nvidia 545.29驱动不要升

我之前一直用终端连接我的工作站&#xff08;系统是arch rolling状态&#xff09;&#xff0c;结果昨天回家难得想试试545驱动下的效果。结果一用chrome播放视频就卡&#xff0c;甚至后面进Login界面也会卡住鼠标。 折腾了一晚上用 $sudo downgrade nvidia nvidia-prime nvid…...

css格式和样式选择器-学习记录

文章目录 一、css代码代码格式1、内联格式&#xff08;不推荐&#xff09;2、内部格式&#xff08;不推荐&#xff09;3、外部格式 &#xff08;推荐&#xff09; 二、css样式选择器1、类型选择器2、类选择器&#xff08;推荐&#xff09;3、id选择器 三、样式表的组合1、Multi…...

【Python】Matplotlib-多张图像的显示

一&#xff0c;情景描述 大家在写论文或者实验报告的时候&#xff0c;经常会放多张图片或数据图像在一起形成对比。比如&#xff0c;我现在有一张经过椒盐噪声处理的图像&#xff0c;现在进行三种滤波&#xff0c;分别是均值&#xff0c;高斯&#xff0c;中值滤波&#xff0c;…...

数据库 关系数据理论

问题 数据冗余更新异常插入异常删除异常 一个好的模式应当不会发生插入异常、删除异常和更新异常&#xff0c;数据冗余应尽可能少 数据依赖 定义&#xff1a;一个关系内部属性与属性之间的一种约束关系&#xff08;该约束关系是通过属性间值的相等与否体现出来数据间相关联…...

网易数帆:云原生向左,低代码向右

网易数帆&#xff0c;前身是网易杭州研究院于2016年孵化的网易云&#xff0c;历经7载探索与沉淀&#xff0c;如今已进化成为覆盖云原生、低代码、大数据和人工智能四大技术赛道的数智化服务提供商&#xff0c;服务于金融、央国企、能源、制造等领域300余家头部企业。 近日&…...

上线亚马逊出口美国审核CPC认证标准内容解析

儿童玩具产品、母婴产品出口美国都需要CPC认证证书和CPSIA报告进行过关清关。 一、什么是CPC认证&#xff1f; CPC认证是Children’sProduct Certificate的英文简称&#xff0c;CPC证书就类似于国内的质检报告&#xff0c;在通过相关检测&#xff0c;出具报告后同时可出具的一…...

SharePoint 的 Web Parts 是什么

Web Parts 可以说是微软 SharePoint 的基础组件。 根据微软自己的描述&#xff0c;Web Parts 是 SharePoint 对内容进行构建的基础&#xff0c;可以想想成一块一块的砖块。 我们需要使用这些砖块来完成一个页面的构建。 我们可以利用 Web Parts 在 SharePoint 中添加文本&am…...

异星工场入门笔记-02-一个重要地学习方法

编程学习地整个过程&#xff0c;最重要的工具就是电脑&#xff0c;其中有一个重点就是可以无成本的重复测试&#xff0c;这大大降低了难度&#xff0c;节约了时间。真正难以学习的不是技术本身&#xff0c;而是材料成本和时间成本&#xff0c;降低这两个因素平地起高楼根本不是…...

pyqt5学习-01 UI界面创建以及生成python代码

前提 环境搭建 打开designer 选择创建主窗体&#xff0c;拖入一个按钮 保存主窗体UI文件为firstMainWin.ui 将UI文件转化为python文件 # 可以把E:\Python\envs\pyqt5stu\Scripts\pyuic5.exe添加到环境变量中 E:\Python\envs\pyqt5stu\Scripts\pyuic5.exe -o firstMainWin.…...

大数据技术与原理实验报告(MapReduce 初级编程实践)

MapReduce 初级编程实践 验环境&#xff1a; 操作系统&#xff1a;Linux&#xff08;建议Ubuntu16.04&#xff09;&#xff1b; Hadoop版本&#xff1a;3.2.2&#xff1b; &#xff08;一&#xff09;编程实现文件合并和去重操作 对于两个输入文件&#xff0c;即文件 A 和…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下&#xff1a; avformat_open_input 精简后的代码如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...

【Post-process】【VBA】ETABS VBA FrameObj.GetNameList and write to EXCEL

ETABS API实战:导出框架元素数据到Excel 在结构工程师的日常工作中,经常需要从ETABS模型中提取框架元素信息进行后续分析。手动复制粘贴不仅耗时,还容易出错。今天我们来用简单的VBA代码实现自动化导出。 🎯 我们要实现什么? 一键点击,就能将ETABS中所有框架元素的基…...

es6+和css3新增的特性有哪些

一&#xff1a;ECMAScript 新特性&#xff08;ES6&#xff09; ES6 (2015) - 革命性更新 1&#xff0c;记住的方法&#xff0c;从一个方法里面用到了哪些技术 1&#xff0c;let /const块级作用域声明2&#xff0c;**默认参数**&#xff1a;函数参数可以设置默认值。3&#x…...

论文阅读:Matting by Generation

今天介绍一篇关于 matting 抠图的文章&#xff0c;抠图也算是计算机视觉里面非常经典的一个任务了。从早期的经典算法到如今的深度学习算法&#xff0c;已经有很多的工作和这个任务相关。这两年 diffusion 模型很火&#xff0c;大家又开始用 diffusion 模型做各种 CV 任务了&am…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema&#xff0c;不需要复杂的查询&#xff0c;只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 &#xff1a;在几秒钟…...