当前位置: 首页 > news >正文

未来之选:为什么向量数据库是您的数据管理利器

文章目录

  • 前言
  • 什么是向量数据库?
    • 向量数据库的机制
    • 向量数据库的优点
    • ‍查询向量数据库
  • 什么是向量Embedding?
  • Amazon OpenSearch Service
  • 总结


前言

向量数据库擅长处理复杂的高维数据,正在彻底改变商业世界的数据检索和分析。它们执行相似性搜索的效率使其对于推荐系统、语义搜索、个性化营销等应用至关重要,为数据驱动的决策开辟了新的途径。

2023年8月1日,亚马逊云科技推出了Amazon OpenSearch Serverless向量引擎预览版,为用户提供了一种简单、可扩展且高性能的相似性搜索功能,使用户能够轻松地创建现代化机器学习(ML)增强的搜索体验和生成式AI应用程序,同时无需管理底层的向量数据库基础设施。
在这里插入图片描述

什么是向量数据库?

首先,我们首先了解向量数据库的概念。它们代表一种数据库管理系统 (DBMS),旨在有效地存储、管理和检索向量化数据。与处理标量值的传统数据库不同,向量数据库处理多维数据或向量。向量数据库在大规模机器学习应用中找到了自己的位置,特别是在推荐系统、语义搜索和异常检测等处理高维向量的领域。
在这里插入图片描述

向量数据库的机制

向量数据库的强大之处在于其独特的数据索引和查询技术。为了减少检索相似向量所需的时间,向量数据库不会迭代数据库中的每个向量。相反,它们使用特定的索引技术,例如 KD 树、分层可导航小世界图 (HNSW) 或倒排多索引 (IMI),以在查询期间显着减少搜索空间的方式组织向量。

在查询期间,这些数据库识别向量空间中可能存在相似向量的区域,并且仅在该区域内进行搜索。这种方法极大地减少了检索相似向量所需的计算时间,使向量数据库对于相似性搜索任务非常有效。

向量数据库的优点

向量数据库旨在在海量数据集中执行高速相似性搜索。它们在向量化数据方面表现出色,因为它们利用独特的数据索引和查询技术,可以显着减少搜索空间,加快检索过程。向量数据库可以高效地处理复杂的数据结构,使其成为高级机器学习应用程序的理想选择。

‍查询向量数据库

现在让我们深入研究查询向量数据库。尽管一开始看起来可能令人畏惧,但一旦掌握了窍门,它就会变得非常简单。查询向量数据库的主要方法是通过相似性搜索,使用欧几里德距离或余弦相似性。
以下是如何使用伪代码添加向量并执行相似性搜索的简单示例:

# 导入向量数据库库
import vector_database_library as vdb # 初始化向量数据库
db = vdb.VectorDatabase(dimensions= 128 ) # 添加向量
for i in  range ( 1000 ): vector =generate_random_vector( 128 )   #generate_random_vector 是一个生成随机数的函数随机128维向量db.add_vector(vector, label= f"vector_ {i} " ) # 进行相似度搜索
query_vector =generate_random_vector( 128 )
相似向量 = db.search(query_vector, top_k= 10 )

上面的代码中,db.add_vector(vector, label=f”vector_{i}”)方法用于向数据库中添加向量,db.search (query_vector, top_k=10)方法用于执行相似性搜索。

什么是向量Embedding?

向量Embedding,也称为向量表示或词Embedding,是高维向量空间中单词、短语或文档的数字表示。它们捕获单词之间的语义和句法关系,使机器能够更有效地理解和处理自然语言。
在这里插入图片描述
向量Embedding通常是使用机器学习技术(例如神经网络)生成的,该技术学习将单词或文本输入映射到密集向量。基本思想是将具有相似含义或上下文的单词表示为向量空间中靠近的向量。

生成向量Embedding的一种流行方法是Word2vec,它根据大型文本语料库中单词的分布属性来学习表示。它可以通过两种方式进行训练:连续词袋(CBOW)模型或skip-gram模型。CBOW 根据上下文单词预测目标单词,而skip-gram 在给定目标单词的情况下预测上下文单词。两种模型都学习将单词映射到对其语义关系进行编码的向量表示。

另一种广泛使用的技术是GloVe(词表示的全局向量),它利用共现统计来生成词Embedding。GloVe 根据语料库中单词一起出现的频率构建单词共现矩阵,然后应用矩阵分解来获得Embedding。

向量Embedding在自然语言处理 (NLP) 任务中具有多种应用,例如语言建模、机器翻译、情感分析和文档分类。

通过将单词表示为密集向量,模型可以对这些向量执行数学运算以捕获语义关系,例如单词类比(例如,“国王”-“男人”+“女人”≈“女王”)。向量Embedding使机器能够捕获单词的上下文含义并增强其处理和理解人类语言的能力。

Amazon OpenSearch Service

OpenSearch的 是一个可扩展、灵活且可扩展的开源软件套件,用于搜索、分析、安全监控和可观察性应用程序,并根据 Apache 2.0 许可证获得许可。 它包括一个搜索引擎 OpenSearch(提供低延迟搜索和聚合)、OpenSearch 仪表板(可视化和仪表板工具)以及一套插件,提供警报、细粒度访问控制、可观察性、安全监控等高级功能。矢量存储和处理。 亚马逊开放搜索服务 是一项完全托管的服务,可让您在 AWS 云中轻松部署、扩展和操作 OpenSearch。
在这里插入图片描述
借助 OpenSearch Service 的矢量数据库功能,您可以实施语义搜索、使用 LLM 的检索增强生成 (RAG)、推荐引擎和搜索富媒体。

Amazon OpenSearch Serverless向量引擎有以下优势:

1、构建于 Amazon OpenSearch Serverless 的向量引擎天然具备鲁棒性。

2、Amazon OpenSearch Serverless 向量引擎由开源 OpenSearch 项目中的 k 近邻搜索功能提供支持,该功能能够提供可靠而精确的结果。

3、向量引擎支持不同领域的广泛用例,包括图像搜索、文档搜索、音乐检索、产品推荐、视频搜索、基于位置的搜索、欺诈检测以及异常检测。

总结

数据驱动决策的未来取决于我们从高维数据空间中导航和提取见解的能力。在这方面,向量数据库正在为数据检索和分析的新时代铺平道路。凭借对向量数据库的深入了解,数据工程师有能力应对管理高维数据带来的挑战和机遇,推动跨行业和应用程序的创新。
总的来说,亚马逊云科技的向量引擎具有强大的性能和可扩展性,可以满足各种应用程序的需求。如果您想要了解或使用向量数据库,亚马逊云科技最近还提供向量数据库的免费试用服务,值得一看。

相关文章:

未来之选:为什么向量数据库是您的数据管理利器

文章目录 前言什么是向量数据库?向量数据库的机制向量数据库的优点‍查询向量数据库 什么是向量Embedding?Amazon OpenSearch Service总结 前言 向量数据库擅长处理复杂的高维数据,正在彻底改变商业世界的数据检索和分析。它们执行相似性搜索…...

隧道施工工艺流程vr线上虚拟展示成为产品3D说明书

行业内都知道,汽车生产的大部分都需要冲压加工来完成,因此汽车冲压工艺是汽车制造过程中的重要环节,传统的展示方式往往局限于二维图纸和实地操作,难以充分展现工艺的细节和流程。然而,随着技术的进步,汽车…...

Nacos(含安装)

Nacos是一个开源的动态服务发现、配置和管理平台。它提供了服务发现、服务健康检查、动态配置管理、服务元数据管理等功能,支持多种服务发现和注册方式。Nacos可以帮助开发者快速构建一个具有弹性和高可用性的微服务应用程序。Nacos的全称是Named after Configurati…...

本地跑项目解决跨域问题

跨域问题: 指的是浏览器不能执行其他网站的脚本,它是由浏览器的同源策略造成的,是浏览器对 javascript 施加的安全限制。 同源策略: 是指协议(protocol)、域名(host)、端口号&…...

聊聊logback的isDebugEnabled

序 本文主要研究一下logback的isDebugEnabled isDebugEnabled public final class Loggerimplements org.slf4j.Logger, LocationAwareLogger, LoggingEventAware, AppenderAttachable<ILoggingEvent>, Serializable {//......public boolean isDebugEnabled() {retur…...

ChatGPT+Roblox,元宇宙的AI叙事逻辑#Leveling Up

MixCopilot 嗨&#xff0c;亲爱的听众朋友们&#xff01;欢迎收听我们的播客节目&#xff01;我是你们的主播&#xff1a;MixCopilot 混合副驾。今天我们要为大家带来的是我们的AI革命系列节目之一。这个系列节目聚焦于AI领域的一些最有影响力的建设者&#xff0c;他们将会讨论…...

Spark算子

一、编写spark程序的准备工作&#xff08;程序入口 SparkContext&#xff09; 1.创建SparkConf val conf new SparkConf().setMaster("local[2]").setAppName("hello-app") 2.创建sparkContext val sc: SparkContext new SparkContext(conf) 二、基…...

Containerd接入Harbor仓库

在使用容器时&#xff0c;避免不了会使用到私有仓库&#xff0c;一般都是采用 harbor 作为私有仓库&#xff0c;docker 对接 harbor 仓库非常简单&#xff0c;哪 containerd 如何对接 harbor 呢&#xff1f; 在内网使用 harbor 根据个人习惯&#xff0c;一般都是非 http 并且是…...

Angular 组件介绍及使用(一)

Angular 概述 Angular 是一个用于构建 Web 应用程序的开源前端框架&#xff0c;由 Google 团队开发和维护。它采用 TypeScript 编程语言&#xff0c;并借鉴了一些传统的 Web 开发模式和最佳实践&#xff0c;提供了强大而灵活的工具和特性。 以下是 Angular 的一些概述要点&am…...

2023.11.13 hive数据仓库之分区表与分桶表操作,与复杂类型的运用

目录 0.hadoop hive的文档 1.一级分区表 2.一级分区表练习2 3.创建多级分区表 4.分区表操作 5.分桶表 6. 分桶表进行排序 7.分桶的原理 8.hive的复杂类型 9.array类型: 又叫数组类型,存储同类型的单数据的集合 10.struct类型: 又叫结构类型,可以存储不同类型单数据的集合…...

Spring Cloud学习(七)【Docker 容器】

文章目录 初识 DockerDocker 介绍Docker与虚拟机Docker架构安装 Docker Docker 基本操作镜像相关命令容器相关命令数据卷 Dockerfile 自定义镜像镜像结构Dockerfile DockerComposeDockerCompose介绍安装DockerCompose Docker镜像仓库常见镜像仓库服务私有镜像仓库 初识 Docker …...

好题分享(2023.11.5——2023.11.11)

目录 前情回顾&#xff1a; 前言&#xff1a; 题目一&#xff1a;补充《移除链表元素》 题目二&#xff1a;《反转链表》 解法一&#xff1a;三指针法 解法二&#xff1a;头插法 题目三&#xff1a; 《相交链表》 题目四&#xff1a;《合并两个有序数列》 题目五&…...

第二章 03Java基础-IDEA相关叙述

文章目录 前言一、IDEA概述二、IDEA下载和安装三、IDEA项目结构介绍四、IDEA的项目和模块操作总结前言 今天我们学习Java基础,IDEA下载以及相关配置和基础使用方法 一、IDEA概述 1.IDEA全称IntelliJ IDEA,是用于Java语言开发的集成工具,是业界公认的目前用于Java程序开发最…...

第三阶段第二章——Python高阶技巧

时间过得很快&#xff0c;这么快就来到了最后一篇Python基础的学习了。话不多说直接进入这最后的学习环节吧&#xff01;&#xff01;&#xff01; 期待有一天 春风得意马蹄疾&#xff0c;一日看尽长安花 o(*&#xffe3;︶&#xffe3;*)o 1.闭包 什么是闭包&#xff1f; 答…...

【Git】Git分支与应用分支Git标签与应用标签

一&#xff0c;Git分支 1.1 理解Git分支 在 Git 中&#xff0c;分支是指一个独立的代码线&#xff0c;并且可以在这个分支上添加、修改和删除文件&#xff0c;同时作为另一个独立的代码线存在。一个仓库可以有多个分支&#xff0c;不同的分支可以独立开发不同的功能&#xff0…...

本地PHP搭建简单Imagewheel私人云图床,在外远程访问——“cpolar内网穿透”

文章目录 1.前言2. Imagewheel网站搭建2.1. Imagewheel下载和安装2.2. Imagewheel网页测试2.3.cpolar的安装和注册 3.本地网页发布3.1.Cpolar临时数据隧道3.2.Cpolar稳定隧道&#xff08;云端设置&#xff09;3.3.Cpolar稳定隧道&#xff08;本地设置&#xff09; 4.公网访问测…...

HCIP---OSPF思维导图

...

Python实现猎人猎物优化算法(HPO)优化XGBoost回归模型(XGBRegressor算法)项目实战

说明&#xff1a;这是一个机器学习实战项目&#xff08;附带数据代码文档视频讲解&#xff09;&#xff0c;如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 猎人猎物优化搜索算法(Hunter–prey optimizer, HPO)是由Naruei& Keynia于2022年提出的一种最新的…...

pandas读写json的知识点

pandas对象可以直接转换为json&#xff0c;使用to_json即可。里面的orient参数很重要&#xff0c;可选值为columns,index,records,values,split,table A B C x 1 4 7 y 2 5 8 z 3 6 9 In [236]: dfjo.to_json(orient"columns") Out[236]: {"A":{"x&qu…...

图论——Dijkstra算法matlab代码

Dijkstra算法步骤 &#xff08;1&#xff09;构造邻接矩阵 &#xff08;2&#xff09;定义起始点 &#xff08;3&#xff09;运行代码 M[ 0 5 9 Inf Inf Inf InfInf 0 Inf Inf 12 Inf InfInf 3 0 15 Inf 23 InfInf 6 …...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

SciencePlots——绘制论文中的图片

文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了&#xff1a;一行…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

AI书签管理工具开发全记录(十九):嵌入资源处理

1.前言 &#x1f4dd; 在上一篇文章中&#xff0c;我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源&#xff0c;方便后续将资源打包到一个可执行文件中。 2.embed介绍 &#x1f3af; Go 1.16 引入了革命性的 embed 包&#xff0c;彻底改变了静态资源管理的…...