手机厂商参与“百模大战”,vivo发布蓝心大模型

在2023 vivo开发者大会上,vivo发布自研通用大模型矩阵——蓝心大模型,其中包含十亿、百亿、千亿三个参数量级的5款自研大模型,其中,10亿量级模型是主要面向端侧场景打造的专业文本大模型,具备本地化的文本总结、摘要等能力。70亿模型是面向手机打造的端云两用模型,具有优秀的语言理解、文本创作能力,同时,上述两个量级的模型支持高通和MTK最新旗舰双平台端侧化部署,在保证数据安全的同时,在出词速度、响应时间、内存占用等方面也非常优秀,实现了安全与性能的双重并举。
700亿模型是面向云端服务的主力模型,其综合能力,在C-Eval、CMMLU、SuperCLUE(10月)等榜单中均处于中文大模型的第一梯队。另外1300亿、1750亿模型也将在更复杂的场景中以更丰富的知识和推理能力为用户带来更专业的智能体验。
vivo蓝心大模型可以支持超过700种手机相关功能,涵盖系统应用等全部场景。通过模型压缩、异构计算等手段,模型可以在手机CPU、GPU等硬件上高效执行,起词速度达到业内顶级水平。
在本次发布会上,vivo还向大家介绍了“1+2+N”的智能系统体验。其中的1,即vivo自研通用大模型矩阵——蓝心大模型BlueLM;2,即系统全局智能辅助应用“蓝心小V”和以公版APP形式推出的自然语言对话机器人“蓝心千询”;N,则是指开发者依托vivo业界首家开源的70亿蓝心大模型和对应的微调框架以及大模型开发套件BlueKit打造的高效、低成本专属大模型。1+2+N,将为用户和开发者带来行业领先的智能化体验。
如今,已经有多家手机厂商宣布了在大模型上的投入。手机上往往存有大量用户隐私信息,大模型的生成能力让“隐私泄露”的方式变得多样化,进而引发安全问题,特别是在云端和终端协同处理的情况下,隐私保护变得更加困难。
vivo的做法是自己设立一套安全能力体系,把握住“价值观”的风险。据介绍,vivo的安全能力体系包含10个大类、66个二级维度和195个三级维度。除了关注传统的涉政、违禁、色情、辱骂等内容安全以外,还针对大模型时代的风险挑战,设立了公序良俗(伦理道德、偏见歧视)、身心健康、指令攻击、财产隐私大类的安全标准。
“深厚的技术沉淀是vivo发展的根本,而只有让这些技术走进普罗大众,为用户带来极致体验,才能实现最大的价值,这也是vivo的本心所在。面向手机行业磅礴的智慧未来,vivo将以AI为底层技术,以OS为平台,与用户、合作伙伴和开发者同心同行,共创更美好、更开放的智慧生态。”vivo高级副总裁、首席技术官施玉坚表示。
相关文章:
手机厂商参与“百模大战”,vivo发布蓝心大模型
在2023 vivo开发者大会上,vivo发布自研通用大模型矩阵——蓝心大模型,其中包含十亿、百亿、千亿三个参数量级的5款自研大模型,其中,10亿量级模型是主要面向端侧场景打造的专业文本大模型,具备本地化的文本总结、摘要等…...
【微软技术栈】C#.NET 中的泛型
本文内容 定义和使用泛型泛型的利与弊类库和语言支持嵌套类型和泛型 借助泛型,你可以根据要处理的精确数据类型定制方法、类、结构或接口。 例如,不使用允许键和值为任意类型的 Hashtable 类,而使用 Dictionary<TKey,TValue> 泛型类并…...
【毕业论文】基于微信小程序的植物分类实践教学系统的设计与实现
基于微信小程序的植物分类实践教学系统的设计与实现https://download.csdn.net/download/No_Name_Cao_Ni_Mei/88519758 基于微信小程序的植物分类实践教学系统的设计与实现 Design and Implementation of Plant Classification Practical Teaching System based on WeChat Mini…...
[量化投资-学习笔记011]Python+TDengine从零开始搭建量化分析平台-MACD金死叉策略回测
在上一章节 MACD金死叉中结束了如何根据 MACD 金死叉计算交易信号。 目录 脚本说明文档(DevChat 生成)MACD 分析脚本安装依赖库参数配置查询与解析数据计算 MACD 指标判断金叉和死叉计算收益绘制图形运行脚本 本次将根据交易信号,模拟交易。更…...
tensorboard报错解决:No dashboards are active for the current data set
版本:tensorboard 2.10.0 问题:文件夹下明明有events文件,但用tensorboard命令却无法显示。 例如: 原因:有可能是文件路径太长了,导致系统无法读取文件。在win系统中规定,目录的绝对路径不得超…...
线性代数本质系列(一)向量,线性组合,线性相关,矩阵
本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第一篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克莱姆…...
python语法之注释
注释可用于解释Python代码。 注释可用于使代码更易读。 注释可用于在测试代码时阻止执行。 (1)创建注释 注释以#开头,Python会忽略它们: #This is a comment print("Hello, World!") 注释可以放在一行…...
React【异步逻辑createAsyncThunk(一)、createAsyncThunk(二)、性能优化、createSelector】(十二)
文章目录 异步逻辑 createAsyncThunk(一) createAsyncThunk(二) 性能优化 createSelector 异步逻辑 //Product.js const onAdd () > {const name nameRef.current.value// 触发添加商品的事件dispatch(addProduct({name…...
Halcon WPF 开发学习笔记(3):WPF+Halcon初步开发
文章目录 前言在MainWindow.xaml里面导入Halcon命名空间WPF简单调用Halcon创建矩形简单调用导出脚本函数 正确显示匹配效果 前言 本章会简单讲解如何调用Halcon组件和接口,因为我们是进行混合开发模式。即核心脚本在平台调试,辅助脚本C#直接调用。 在M…...
P6入门:项目初始化9-项目详情之资源 Resource
前言 使用项目详细信息查看和编辑有关所选项目的详细信息,在项目创建完成后,初始化项目是一项非常重要的工作,涉及需要设置的内容包括项目名,ID,责任人,日历,预算,资金,分类码等等&…...
Python高级语法----使用Python进行模式匹配与元组解包
文章目录 1. 模式匹配的新特性2. 高级元组解包技巧3. 数据类的匹配与应用1. 模式匹配的新特性 Python自3.10版本起引入了结构化模式匹配的新特性,这是一种强大的工具,允许开发者用更清晰、更直观的方式处理数据结构。模式匹配类似于其他编程语言中的switch-case语句,但它更…...
MySQL安装配置与使用教程(2023.11.13 MySQL8.0.35)
CONTENTS 1. MySQL的安装与配置2. MySQL常用操作教程 1. MySQL的安装与配置 MySQL Windows Installer 下载地址:MySQL Installer。 我们下载最新版本(目前是8.0.35)的安装包,注意要选择更大的那个,名字为 mysql-inst…...
【阿里云数据采集】采集标准Docker容器日志:部署阿里云Logtail容器以及创建Logtail配置,用于采集标准Docker容器日志
文章目录 引言I 预备知识1.1 Logtail1.2 安装Logtail1.3 创建用户自定义标识机器组1.4 设置logtail容器组件重启策略II 采集服务器日志2.1 采集同一账号下同地域服务器的日志2.2 不同账号下同地域服务器的日志2.3 创建Logtail配置III 查询语法3.1 具体查询语法3.2 查询示例3.3 …...
Django中如何创建表关系,请求生命周期流程图
Django中ORM创建表关系 如何创建表关系(一对一 , 一对多 , 多对多) 图书表,出版社表,作者表,作者详情表 换位思考法判断表关系 图书表和出版社表 >>> 一对多 >>> 图书表是多,出…...
MongoDB副本集配置和创建
副本集有三类角色:master(primary),slave(secondary),仲裁服务器。 primary是主,只有primary能写入,secondary无法插入数据,且需要声明是slave才能查看数据 一般生产搞三个服务器做一个master和两个slave&a…...
使用 `open-uri.with_proxy` 方法打开网页
Ruby 爬虫程序如下: require open-uri require nokogiri# 定义代理信息 proxy_host jshk.com.cn# 定义要爬取的网页 URL url http://www.example.com# 使用代理信息打开网页 open-uri.with_proxy(proxy_host, proxy_port) do |proxy|# 使用 Nokogiri 库解析网页内…...
数据库表的设计——范式
目录 1. 设计数据表需要注意的点 2. 范式 2.1 范式简介 2.2 范式有哪些? 2.3 第一范式(1NF) 2.4 第二范式(2NF) 2.5 第三范式(3NF) 2.6 小结 1. 设计数据表需要注意的点 (1)首先要考虑设计这张表的用途,这张表都要存放什…...
Brute Force
Brute Force "Brute Force"(暴力破解)指的是一种通过尝试所有可能的组合来获取访问、解密或破解信息的攻击方法。这种攻击方法通常是基于暴力和不断尝试的,不依赖漏洞或弱点。通常用于破解密码、破坏系统或获取未经授权的访问权限…...
HTML简单介绍
且视他人之疑目如盏盏鬼火,大胆地去你的夜路。 目录 1.网页 2.Web标准 3.HTML 3.1HTML结构 3.2HTML标签编辑 4.标签介绍 4.1排版标签 4.2文本格式化标签 4.3媒体标签 4.3.1图片标签 4.3.2 音频标签 4.3.3视频标签 5.相对路径 6.链接标签 6.1target属…...
【Java笔试强训】Day10(CM62 井字棋、HJ87 密码强度等级)
CM62 井字棋 链接:井字棋 题目: 给定一个二维数组board,代表棋盘,其中元素为1的代表是当前玩家的棋子,0表示没有棋子,-1代表是对方玩家的棋子。当一方棋子在横竖斜方向上有连成排的及获胜(及…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
中医有效性探讨
文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...
