当前位置: 首页 > news >正文

AI 绘画 | Stable Diffusion 进阶 Embeddings(词嵌入)、LoRa(低秩适应模型)、Hypernetwork(超网络)

前言

Stable Diffusion web ui,除了依靠文生图(即靠提示词生成图片),图生图(即靠图片+提示词生成图片)外,这两种方式还不能满足我们所有的绘图需求,于是就有了 Embeddings(词嵌入)、LoRa(低秩适应模型)、Hypernetwork(超网络)。

  • Embeddings模型 模型非常小,常常用于放在反向提示词里,让图像不出现生么,当然也可与用于正向提示词,生成我们想要的
  • LoRa模型 模型几十到几百MB,更多用于画特定人物,比如游戏/动漫的人物。平台上lora模型比较多。
  • Hypernetwork模型 大小和作用都和LoRa模型差不多,平台上Hypernetwork模型比较少。

在这里插入图片描述
你只需要在提示词词,使用Embeddings(词嵌入)、LoRa(低秩适应模型)、Hypernetwork(超网络)的标签。

Embeddings(词嵌入)

概念

Embeddings中文翻译为嵌入的,在Stable Diffusion中被称为词嵌入(嵌入式向量),这些向量可以捕捉文本中的语义信息,并在其中映射特定风格特征的信息。Embeddings一般保存的信息量相对较小,对人物的还原、对动作的指定、对画风的指定效果一般。除此之外,它还有另外一个名字Textual Inversion(文本反置、文本倒置)。它的模型被成为嵌入式模型、(反置/倒置)模型 。
Embeddings在Stable Diffusion模型中,又被称作嵌入式向量。它可以将文本编码器(TextEncoder)的输入(例如提示词)转换成电脑可以识别的文本向量,并在其中映射特定风格特征的信息。Embeddings模型和VAE模型一样后缀格式是.pt。大小仅为几kb到几十kb之间。Embeddings和checkpoint模型和lora模型比,它内部不包含图片信息,只是一些电脑可以识别图片的文本向量。举个比喻,如果把checkpoint模型比作一本大词典的话,Embeddings就是这本大词典中一些特定词的标签,它能精准的指向个别字词的含义,从而提共一个高效的索引。
比如我们像要画一个明星,但是checkpoint模型没有该明星名字对应的图片信息,这是我就可以用该明星的Embeddings模型生成这个明星的图片了,这里你可以Embeddings模型理解为包含这个明星的五官,面部、身体特征的嵌入式向量。使用Embeddings,Stable Diffusion就更容易理解我们画的明星长什么样子了!

使用

我们在模型下载网站上下载我们想要的Embeddings模型(国内liblib网站)。
在这里插入图片描述
然后放到SD WEB UI根目录下的embeddings文件夹内。,然后在SD WEB UI页面,点击刷新按钮,加载出来我们下载的Embeddings模型,然后点击Embeddings模型,会自动出现在提示词输入框。(默认会在正向提示词输入框内,但是当鼠标光标在反向提示词框内时,会出现在反向提示词框。)
在这里插入图片描述
这里的Embeddings模型也可以用提示词语法,圆括号和冒号来调整权重系数。
在这里插入图片描述

LoRa(低秩适应模型)

概念

Stable Diffusion Lora模型是一种通过低秩适应大型语言模型的方法。其核心思想是将原始的大型参数矩阵分解成两个或者多个低秩矩阵,并且只更新其中的一部分,从而减少计算量和存储需求,提高训练效率和模型性能。Lora的作用在于帮助你向AI传递描述某一个特征明确,主体清晰的形象。

使用

我们在模型下载网站(liblib.ai)上下载我们想要的lora模型。Lora模型需要放在 SD WEB UI根目录下的models\Lora文件夹内,大小一般为几十MB到几百MB。然后和嵌入式模型操作一样,先刷新在网页上加载出lora模型,然后点击lora到提示词输入框。
在这里插入图片描述
这里和嵌入式模型用法不同的是,lora模型需要加<>括号。格式 <lora:模型名:权重>,权重为1的时候,可以不写 <lora:模型名>,lora的权重建议设置在0.6左右,因为lora的权重越高,其他提示词的作用就越小,lora的权重过低,生成的图片又不像lora的训练的人物模样。当然lora的权重的最佳值,还跟你选择checkpoint模型有关,相同的lora搭配不同的checkpoint模型,生图的效果也有很大差别。经过我自己的大量测试,lora的权重建议设置在0.6左右,搭配大多数checkpoint模型都会有不错的效果。

在这里插入图片描述
值得注意的是有些lora模型需要搭配触发提示词,才能发挥lora的效果。

Hypernetwork(超网络)

概念

Stable Diffusion Hypernetwork是一种神经网络架构,它允许动态生成神经网络的参数(权重)。在Stable Diffusion中,Hypernetwork被用于动态生成分类器的参数,为Stable Diffusion模型添加了随机性,减少了参数量,并能够引入side information来辅助特定任务,这使得该模型具有更强的通用性和概括能力。

Hypernetwork的重要功能之一是对画面风格的转换,即切换不同的画风。它的特点在于能够生成多种画风的作品,同时能够保证画面的稳定性和清晰度。

使用

我们在模型下载网站(liblib.ai)上下载我们想要的lora模型。Hypernetwork模型需要放在 SD WEB UI根目录下的models\hypernetworks文件夹内,大小和lora模型差不多,一般为几十MB到几百MB。
在这里插入图片描述

hypernetworks模型的使用方法和lora模型一样,不同的是<lora:模型名>替换成了<hypernet:模型名>。格式 <hypernet:模型名:权重>
在这里插入图片描述
可以看出除了Embeddings模型的使用不需要<>尖括号外,hypernetworks模型和lora模型的使用都需要<>尖括号,说明hypernetworks模型和lora模型都是类似的,都是需要图片训练的,模型的中包含大量图片信息,而Embeddings模型只是简单的文本标记(向量)。

LoRA和Hypernetwork的区别

  • LoRA和Hypernetwork都是机器学习领域中比较前沿的技术,但是它们的作用有所不同。LoRA是一种图像风格转换模型,它可以将一张图片从一种风格转换成另一种风格,实现艺术风格迁移等功能。而Hypernetwork是一种模型生成技术,它的作用是学习从一个低维空间的潜在表示到一个高维空间的输出的映射函数。这种方法的主要目的是提供更加一般性和灵活性的模型生成能力,从而可以用更少的参数生成效果更好的模型。两种方法都有各自的优点和限制,需要根据具体任务的需求来选择相应的方法。

  • LoRA模型被广泛应用在图像处理领域,有很多应用场景,比如图像风格转换、艺术化渲染等等。同时,LoRA模型模型能够使用预训练权重,因此在实际应用中获取高质量的样本比较容易,并且由于LoRA的模型架构相对简单,因此训练比较容易实现。因此,很多人在图像处理领域中应用LoRA模型来处理图像,使得网上关于LoRA模型的文章和论文比较多。

  • 而Hypernetwork模型则相对较新,目前应用还较为局限。它的一个重要应用方向是用于神经网络架构搜索,可以快速搜索到高效的网络结构。但是,这种方法的难度比较大,需要大量的计算资源和专业知识以及较长的时间进行调试和优化。因此,Hypernetwork模型的文章和论文相对比较少,目前还没有被大规模应用到实际的项目中。

相关文章:

AI 绘画 | Stable Diffusion 进阶 Embeddings(词嵌入)、LoRa(低秩适应模型)、Hypernetwork(超网络)

前言 Stable Diffusion web ui&#xff0c;除了依靠文生图&#xff08;即靠提示词生成图片&#xff09;&#xff0c;图生图&#xff08;即靠图片提示词生成图片&#xff09;外&#xff0c;这两种方式还不能满足我们所有的绘图需求&#xff0c;于是就有了 Embeddings&#xff0…...

【汇编】计算机的组成

文章目录 前言一、计算机的基本组成1.1 中央处理器&#xff08;CPU&#xff09;1.2 内存指令和数据存储的位置计算机中的存储单元计算机中的总线地址总线数据总线控制总线 1.3 输入设备和输出设备1.4 存储设备 二、计算机工作原理三、计算机的层次结构总结 前言 计算机是现代社…...

asp.net学生宿舍管理系统VS开发sqlserver数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net 学生宿舍管理系统是一套完善的web设计管理系统&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境为vs2010&#xff0c;数据库为sqlserver2008&#xff0c;使用c#语言 开发 asp.net学生宿舍管理系统1 应用技…...

[C++]Leetcode17电话号码的字母组合

题目描述 解题思路&#xff1a; 这是一个深度优先遍历的题目&#xff0c;涉及到多路递归&#xff0c;下面通过画图和解析来分析这道题。 首先说到的是映射关系&#xff0c;那么我们就可以通过一个字符串数组来表示映射关系&#xff08;字符串下标访问对应着数字映射到对应的…...

OpenBMC Uboot下使用TFTP升级系统

设置TFTP服务器 setenv serverip 192.168.2.300 传入系统固件 OpenBMC的.bin文件&#xff1a;image-bmc&#xff0c;位于obmc-phosphor-image-XXXXX.static.mtd.all.tar压缩包中&#xff0c; image-bmc解压到TFTP服务器共享目录&#xff0c;传入固件&#xff1a; #直接输入…...

巨量千川「全域推广」指南来袭!助力商家开拓新流量

如今&#xff0c;在抖音上进行直播销售的商家&#xff0c;都希望在不影响ROI的情况下&#xff0c;提高整体业务水平&#xff0c;实现高效率的结果。然而&#xff0c;考虑到人货场波动和直播本身的复杂性&#xff0c;许多商家面临着诸如低投放效果、波动的ROI和缺乏GMV增长动力等…...

视频剪辑助手:轻松实现视频随机分割并提取音频保存

随着社交媒体和视频平台的日益普及&#xff0c;视频制作和分享已成为人们日常生活的一部分。无论是分享个人生活&#xff0c;还是展示才艺&#xff0c;或是推广产品&#xff0c;视频都是一个非常有效的工具。但是&#xff0c;视频制作往往涉及到大量的视频剪辑工作&#xff0c;…...

java注解的作用

注解 Java注解是一种用于给类、方法、字段、参数等元素添加元数据的机制&#xff0c;可以用来实现一些特定的功能&#xff0c;比如配置、文档、测试等。Java注解有两种类型&#xff1a;内置的和自定义的。内置的注解是Java语言或者JDK提供的&#xff0c;比如Override, Depreca…...

css中的hover用法示例(可以在vue中制作鼠标悬停显示摸个按钮的效果)

css中的hover 1、hover的定义 hover选择器用于选择鼠标指针浮动在上面的元素&#xff0c;它适用于所有元素&#xff0c;可以用来实现类似于js的一些功能。 2.hover的作用 css中hover属性&#xff0c;鼠标移到上面的时候可以激活&#xff0c;它可以实现悬浮元素上改变样式&a…...

labview实现仪器的控制visa

*IDN? 是识别大多数仪器的查询指令。仪器会回应一个用于描述仪器的识别字符串。如果仪器不接受该指令&#xff0c;请在仪器手册中查询仪器能识别的指令列表。 如下图所示&#xff1a; 程序如下&#xff1a;...

说说React Router有几种模式?实现原理?

一、是什么 在单页应用中,一个web项目只有一个html页面,一旦页面加载完成之后,就不用因为用户的操作而进行页面的重新加载或者跳转,其特性如下: 改变 url 且不让浏览器像服务器发送请求在不刷新页面的前提下动态改变浏览器地址栏中的URL地址其中主要分成了两种模式: has…...

laravel5+版本aes128加解密

使用场景&#xff1a; aes/cbc/pkcs5padding/128加解密 EncryptService.php代码示例如下 namespace App\Services;/*** aes/cbc/pkcs5padding/128加解密*/ class EncryptService {//加密方法private static $sDefaultEncMethod AES-128-CBC;//默认key值-自定义16位字符串长度…...

Spark的转换算子和操作算子

1 Transformation转换算子 1.1 Value类型 1&#xff09;创建包名&#xff1a;com.shangjack.value 1.1.1 map()映射 参数f是一个函数可以写作匿名子类&#xff0c;它可以接收一个参数。当某个RDD执行map方法时&#xff0c;会遍历该RDD中的每一个数据项&#xff0c;并依次应用f函…...

传奇手游天花板赤月【盛世遮天】【可做底版】服务端+自主授权+详细教程

搭建资源下载地址&#xff1a;传奇手游天花板赤月【盛世遮天】【可做底版】服务端自主授权详细教程-海盗空间...

TP触摸屏调试

此处以MT6739 1g版本敦泰TP为例(kernel 4.19),主要修改点如下: 1. 两个配置文件defconfig: kernel-4.19\arch\arm\configs\k39tv1_bsp_1g_k419_debug_defconfig: kernel-4.19\arch\arm\configs\k39tv1_bsp_1g_k419_defconfig: CONFIG_INPUT_TOUCHSCREEN=y CONFIG_TOUCHSCRE…...

11-13 spring整合web

spring注解 把properties文件中的key注入到属性当中去 xml配置文件拆分 -> import标签 注解开发中 import 实现 搞一个主配置类&#xff0c;其他配置类全部导入进来这个这个主配置类 而且其他配置类不需要 加上configuration注解 之前这个注解用于表示这是一个配置文件 …...

基于C#开发的任天堂 Switch 开源模拟器

今天给大家推荐一款基于C#开发的任天堂 Switch 开源模拟器&#xff0c;可方便开发人员来测试游戏&#xff0c;也用于娱乐。 01 项目简介 Ryujinx 是一个开源的任天堂 Switch 模拟器&#xff0c;可以在 PC 上模拟运行 Switch 游戏。采用C#开发&#xff0c;基于 .NET Core技术框…...

做一个Sprngboot文件上传-阿里云

概述 这个模块是用来上传头像以及文章封面的&#xff0c;图片的值是一个地址字符串&#xff0c;一般存放在本地或阿里云服务中 1、本地文件上传 我们将文件保存在一个本地的文件夹下&#xff0c;由于可能两个人上传不同图片但是却同名的图片&#xff0c;那么就会一个人的图片就…...

k8s ----对外暴露

目录 一、Ingress 简介 1、Ingress 组成 2、Ingress 工作原理 二、部署Ingress 1、部署 nginx-ingress-controller 2、暴露ingress 4.1 DaemonSetHostNetworknodeSelector模式的service 4.2 DeploymentNodePort模式的Service 三、Ingress HTTP 代理访问 四、Ingress …...

每日一题(LeetCode)----数组--长度最小的子数组

每日一题(LeetCode)----数组–长度最小的子数组 1.题目&#xff08; 209.长度最小的子数组&#xff09; 给定一个含有 n 个正整数的数组和一个正整数 target 。 找出该数组中满足其总和大于等于 target 的长度最小的 连续子数组 [numsl, numsl1, ..., numsr-1, numsr] &…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

DockerHub与私有镜像仓库在容器化中的应用与管理

哈喽&#xff0c;大家好&#xff0c;我是左手python&#xff01; Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库&#xff0c;用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...