Python实现WOA智能鲸鱼优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。


1.项目背景
鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法,其优点在于操作简单,调整的参数少以及跳出局部最优的能力强。
本项目通过WOA智能鲸鱼优化算法寻找最优的参数值来优化BP神经网络回归模型。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 因变量 |
数据详情如下(部分展示):

3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:

3.3 数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析
4.1 y变量直方图
用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。
4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:

5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建WOA智能鲸鱼优化算法优化BP神经网络回归模型
主要使用WOA智能鲸鱼优化算法优化BP神经网络回归算法,用于目标回归。
6.1 WOA智能鲸鱼优化算法寻找的最优参数
最优参数:

6.2 最优参数值构建模型
| 编号 | 模型名称 | 参数 |
| 1 | BP神经网络回归模型 | units=best_units |
| 2 | epochs=best_epochs |
6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失曲线图

7.模型评估
7.1 评估指标及结果
评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。
| 模型名称 | 指标名称 | 指标值 |
| 测试集 | ||
| BP神经网络回归模型 | R方 | 0.9971 |
| 均方误差 | 108.7526 | |
| 可解释方差值 | 0.9971 | |
| 平均绝对误差 | 8.6383 | |
从上表可以看出,R方0.9971,为模型效果较好。
关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。
8.结论与展望
综上所述,本文采用了WOA智能鲸鱼优化算法寻找BP神经网络回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:链接:https://pan.baidu.com/s/12c4W2khpKdDHYOJ0yL5Zag
提取码:mt59
更多项目实战,详见机器学习项目实战合集列表:
机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客
相关文章:
Python实现WOA智能鲸鱼优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提…...
【机器学习基础】机器学习入门(2)
🚀个人主页:为梦而生~ 关注我一起学习吧! 💡专栏:机器学习 欢迎订阅!后面的内容会越来越有意思~ 💡往期推荐:【机器学习基础】机器学习入门(1) 💡…...
C#中在.NET 7.0控制台应用使用ADO.NET的方法
目录 一、新建.NET Framwork类、通过ADO.NET访问数据库并生成库 1.操作流程 2.库源码 3.生成库 二、再建 .NET 7.0控制台应用、依赖像引用库 1. 操作流程 2.program.cs源码 3.在program.cs中查看类Class1定义 作者在上一篇文章中曾说过.NET 7.0框架下不支持ADO…...
垃圾回收(GC)
目录 什么是垃圾,什么是垃圾回收? 为什么要GC?(利弊) 怎么判断是垃圾 引用计数法: <...
【无标题】通用工作站设计方案:ORI-D3R600服务器-多路PCIe3.0的双CPU通用工作站
ORI-D3R600服务器-多路PCIe3.0的双CPU通用工作站 一、机箱功能和技术指标: 系统 系统型号 ORI-SR630 主板支持 EEB(12*13)/CEB(12*10.5)/ATX(12*9.6)/Micro ATX 前置硬盘 最大支持8个3.5寸(兼容25寸)SATA硬盘 2*2.5(后置) 电源类型 CRPS元余电源࿰…...
HarmonyOS元服务实现今天吃什么
一、前言 作为一个职业打工人,每天点外卖吃啥东西都有选择综合症,突发奇想让程序帮我们随机选择一个吃的,是不是可以解决我们的选择问题呢,说干就干,我们就使用HarmonyOS元服务实现一下这个功能。为什么选择这个Harmon…...
激活函数的本质
激活函数(Activation Function) 是神经网络中的一种函数,它接受一个输入(通常是神经元的加权和)并产生一个输出作为神经元的最终输出。激活函数的作用是引入非线性性,使神经网络能够学习复杂的模式和关系。…...
[工业自动化-18]:西门子S7-15xxx编程 - 软件编程 - PLC用于工业领域的嵌入式系统:硬件原理图、指令系统、系统软件架构、开发架构等
目录 前言: 一、PLC的硬件电路原理 1.1 硬件框图 1.2 硬件模块详解 (1)CPU (2)存储器 (3)输入/输出(I/O)模块 (4)编程器 (5&a…...
【C++】——运算符重载
🎃个人专栏: 🐬 算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客 🐳Java基础:Java基础_IT闫的博客-CSDN博客 🐋c语言:c语言_IT闫的博客-CSDN博客 🐟MySQL:…...
怎么理解独立机器和虚拟机
独立服务器:顾名思义,就是一个放在机房的实实在在的物理服务器,一个单独的主机(具有性能高,处理速度快等优点,但 也有价格高,可扩展性不强等缺点) vps:虚拟专用服务器,一…...
以太网和局域网
计算机网络的定义 计算机网络是一个将分散的、具有独立功能的计算机,通过通信设备与线路连接起来,由根据协议编写的软件来实现的资源共享和信息传递的系统 计算机网络的分类 广域网是互联网的核心部分 局域网 常见的局域网拓扑结构有4大类:…...
【Git】第三篇:基本操作(配置本地仓库)
初次使用git需要设置你的用户名以及邮箱,这将作为当前机器git的标识,如果你用它来下载远程仓库一些需要登录权限的仓库会要求登录,git默认使用配置邮箱以及用户名登入,但会要求你手动输入密码。 配置本地仓库:git con…...
JS中sort排序
在我们JS排序中,有许多排序的方法,比如冒泡排序、选择排序等等。这次我为大家介绍一下sort排序! sort 按照 Unicode code 位置排序,默认升序 默认情况下,sort()会按照升序重新排序数组,即最小值在前最大值…...
【现场问题】datax中write部分为Oracle的时候插入clolb类型字段,插入的数据为string且长度过场问题
datax的Oraclewriter 报错显示查询报错展示查找datax中的数据插入模块 报错显示 occurred during batching: ORA-01704: string literal too long 查询报错展示 基本上查到的都是这样的,所以锁定是clob的字段类型的问题,而且是只有Oracle出问题&#…...
ASK、PSK、FSK的调制与解调
ASK、PSK、FSK的调制与解调 本文主要涉及数字信号的调制与解调,内容包括:2ASK、2PSK、2FSK的调制与解调以及频谱分析 关于通信原理还有其他文章可参考: 1、信息量、码元、比特、码元速率、信息速率详细解析——实例分析 2、模拟系统的AM信号的…...
基于XML的声明式事务
场景模拟 参考基于注解的声明式事务 修改Spring的配置文件 将Spring配置文件中去掉tx:annotation-driven标签,并添加配置: <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org…...
力扣labuladong一刷day9滑动窗口共4题
力扣labuladong一刷day9滑动窗口共4题 文章目录 力扣labuladong一刷day9滑动窗口共4题一、76. 最小覆盖子串二、567. 字符串的排列三、438. 找到字符串中所有字母异位词四、3. 无重复字符的最长子串 一、76. 最小覆盖子串 题目链接:https://leetcode.cn/problems/m…...
ubuntu开机系统出错且无法恢复。请联系系统管理员。
背景: ubuntu22.04.2命令行,执行自动安装系统推荐显卡驱动命令,字体变大,重启后出现如下图错误,无法进入系统,无法通过CTRLALTF1-F3进入TTY模式。 解决办法: 1.首先要想办法进入系统ÿ…...
Transformer详解一:transformer的由来和先导知识
目录 参考资料前言一、预训练二、神经网络语言模型(NNLM):预测下一个词one-hot编码的缺陷词向量(word embedding) 三、Word2Vec模型:得到词向量CBOWSkip-gramWord2Vec和NNLM的区别Word2Vec的缺陷 四、ELMO模…...
数字化产品经理的金字塔能力模型
在企业数字化转型的浪潮下,要求IT团队更加主动的服务业务、赋能业务,而数字化产品经理正是IT、业务融合的桥梁,该岗位需要具备业务、技术、商业的复合知识结构,并且拥有很强的自驱力。那么数字化产品经理在企业如何产生价值、赋能…...
AI Agent与Agentic AI:原理、应用、挑战与未来展望
文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...
iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序
一、开发环境准备 工具安装: 下载安装DevEco Studio 4.0(支持HarmonyOS 5)配置HarmonyOS SDK 5.0确保Node.js版本≥14 项目初始化: ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...
成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战
在现代战争中,电磁频谱已成为继陆、海、空、天之后的 “第五维战场”,雷达作为电磁频谱领域的关键装备,其干扰与抗干扰能力的较量,直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器,凭借数字射…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
毫米波雷达基础理论(3D+4D)
3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
uni-app学习笔记三十五--扩展组件的安装和使用
由于内置组件不能满足日常开发需要,uniapp官方也提供了众多的扩展组件供我们使用。由于不是内置组件,需要安装才能使用。 一、安装扩展插件 安装方法: 1.访问uniapp官方文档组件部分:组件使用的入门教程 | uni-app官网 点击左侧…...
