当前位置: 首页 > news >正文

Python实现WOA智能鲸鱼优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法,其优点在于操作简单,调整的参数少以及跳出局部最优的能力强。

本项目通过WOA智能鲸鱼优化算法寻找最优的参数值来优化BP神经网络回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

  

从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。

关键代码:  

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:    

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建WOA智能鲸鱼优化算法优化BP神经网络回归模型

主要使用WOA智能鲸鱼优化算法优化BP神经网络回归算法,用于目标回归。

6.1 WOA智能鲸鱼优化算法寻找的最优参数  

最优参数:

6.2 最优参数值构建模型

编号

模型名称

参数

1

BP神经网络回归模型

units=best_units

2

epochs=best_epochs

6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失曲线图

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

模型名称

指标名称

指标值

测试集

BP神经网络回归模型

  R方

0.9971

均方误差

108.7526

可解释方差值

0.9971

平均绝对误差

8.6383

从上表可以看出,R方0.9971,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。  

8.结论与展望

综上所述,本文采用了WOA智能鲸鱼优化算法寻找BP神经网络回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。

# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:链接:https://pan.baidu.com/s/12c4W2khpKdDHYOJ0yL5Zag 
提取码:mt59

更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


 

相关文章:

Python实现WOA智能鲸鱼优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战

说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提…...

【机器学习基础】机器学习入门(2)

🚀个人主页:为梦而生~ 关注我一起学习吧! 💡专栏:机器学习 欢迎订阅!后面的内容会越来越有意思~ 💡往期推荐:【机器学习基础】机器学习入门(1) 💡…...

C#中在.NET 7.0控制台应用使用ADO.NET的方法

目录 一、新建.NET Framwork类、通过ADO.NET访问数据库并生成库 1.操作流程 2.库源码 3.生成库 二、再建 .NET 7.0控制台应用、依赖像引用库 1. 操作流程 2.program.cs源码 3.在program.cs中查看类Class1定义 作者在上一篇文章中曾说过.NET 7.0框架下不支持ADO…...

垃圾回收(GC)

目录 什么是垃圾,什么是垃圾回收? 为什么要GC?(利弊) 怎么判断是垃圾 引用计数法: <...

【无标题】通用工作站设计方案:ORI-D3R600服务器-多路PCIe3.0的双CPU通用工作站

ORI-D3R600服务器-多路PCIe3.0的双CPU通用工作站 一、机箱功能和技术指标&#xff1a; 系统 系统型号 ORI-SR630 主板支持 EEB(12*13)/CEB(12*10.5)/ATX(12*9.6)/Micro ATX 前置硬盘 最大支持8个3.5寸(兼容25寸)SATA硬盘 2*2.5(后置) 电源类型 CRPS元余电源&#xff0…...

HarmonyOS元服务实现今天吃什么

一、前言 作为一个职业打工人&#xff0c;每天点外卖吃啥东西都有选择综合症&#xff0c;突发奇想让程序帮我们随机选择一个吃的&#xff0c;是不是可以解决我们的选择问题呢&#xff0c;说干就干&#xff0c;我们就使用HarmonyOS元服务实现一下这个功能。为什么选择这个Harmon…...

激活函数的本质

激活函数&#xff08;Activation Function&#xff09; 是神经网络中的一种函数&#xff0c;它接受一个输入&#xff08;通常是神经元的加权和&#xff09;并产生一个输出作为神经元的最终输出。激活函数的作用是引入非线性性&#xff0c;使神经网络能够学习复杂的模式和关系。…...

[工业自动化-18]:西门子S7-15xxx编程 - 软件编程 - PLC用于工业领域的嵌入式系统:硬件原理图、指令系统、系统软件架构、开发架构等

目录 前言&#xff1a; 一、PLC的硬件电路原理 1.1 硬件框图 1.2 硬件模块详解 &#xff08;1&#xff09;CPU &#xff08;2&#xff09;存储器 &#xff08;3&#xff09;输入/输出&#xff08;I/O&#xff09;模块 &#xff08;4&#xff09;编程器 &#xff08;5&a…...

【C++】——运算符重载

&#x1f383;个人专栏&#xff1a; &#x1f42c; 算法设计与分析&#xff1a;算法设计与分析_IT闫的博客-CSDN博客 &#x1f433;Java基础&#xff1a;Java基础_IT闫的博客-CSDN博客 &#x1f40b;c语言&#xff1a;c语言_IT闫的博客-CSDN博客 &#x1f41f;MySQL&#xff1a…...

怎么理解独立机器和虚拟机

独立服务器&#xff1a;顾名思义&#xff0c;就是一个放在机房的实实在在的物理服务器&#xff0c;一个单独的主机&#xff08;具有性能高&#xff0c;处理速度快等优点&#xff0c;但 也有价格高&#xff0c;可扩展性不强等缺点&#xff09; vps&#xff1a;虚拟专用服务器,一…...

以太网和局域网

计算机网络的定义 计算机网络是一个将分散的、具有独立功能的计算机&#xff0c;通过通信设备与线路连接起来&#xff0c;由根据协议编写的软件来实现的资源共享和信息传递的系统 计算机网络的分类 广域网是互联网的核心部分 局域网 常见的局域网拓扑结构有4大类&#xff1a…...

【Git】第三篇:基本操作(配置本地仓库)

初次使用git需要设置你的用户名以及邮箱&#xff0c;这将作为当前机器git的标识&#xff0c;如果你用它来下载远程仓库一些需要登录权限的仓库会要求登录&#xff0c;git默认使用配置邮箱以及用户名登入&#xff0c;但会要求你手动输入密码。 配置本地仓库&#xff1a;git con…...

JS中sort排序

在我们JS排序中&#xff0c;有许多排序的方法&#xff0c;比如冒泡排序、选择排序等等。这次我为大家介绍一下sort排序&#xff01; sort 按照 Unicode code 位置排序&#xff0c;默认升序 默认情况下&#xff0c;sort()会按照升序重新排序数组&#xff0c;即最小值在前最大值…...

【现场问题】datax中write部分为Oracle的时候插入clolb类型字段,插入的数据为string且长度过场问题

datax的Oraclewriter 报错显示查询报错展示查找datax中的数据插入模块 报错显示 occurred during batching: ORA-01704: string literal too long 查询报错展示 基本上查到的都是这样的&#xff0c;所以锁定是clob的字段类型的问题&#xff0c;而且是只有Oracle出问题&#…...

ASK、PSK、FSK的调制与解调

ASK、PSK、FSK的调制与解调 本文主要涉及数字信号的调制与解调&#xff0c;内容包括&#xff1a;2ASK、2PSK、2FSK的调制与解调以及频谱分析 关于通信原理还有其他文章可参考&#xff1a; 1、信息量、码元、比特、码元速率、信息速率详细解析——实例分析 2、模拟系统的AM信号的…...

基于XML的声明式事务

场景模拟 参考基于注解的声明式事务 修改Spring的配置文件 将Spring配置文件中去掉tx:annotation-driven标签&#xff0c;并添加配置&#xff1a; <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org…...

力扣labuladong一刷day9滑动窗口共4题

力扣labuladong一刷day9滑动窗口共4题 文章目录 力扣labuladong一刷day9滑动窗口共4题一、76. 最小覆盖子串二、567. 字符串的排列三、438. 找到字符串中所有字母异位词四、3. 无重复字符的最长子串 一、76. 最小覆盖子串 题目链接&#xff1a;https://leetcode.cn/problems/m…...

ubuntu开机系统出错且无法恢复。请联系系统管理员。

背景&#xff1a; ubuntu22.04.2命令行&#xff0c;执行自动安装系统推荐显卡驱动命令&#xff0c;字体变大&#xff0c;重启后出现如下图错误&#xff0c;无法进入系统&#xff0c;无法通过CTRLALTF1-F3进入TTY模式。 解决办法&#xff1a; 1.首先要想办法进入系统&#xff…...

Transformer详解一:transformer的由来和先导知识

目录 参考资料前言一、预训练二、神经网络语言模型&#xff08;NNLM&#xff09;&#xff1a;预测下一个词one-hot编码的缺陷词向量&#xff08;word embedding&#xff09; 三、Word2Vec模型&#xff1a;得到词向量CBOWSkip-gramWord2Vec和NNLM的区别Word2Vec的缺陷 四、ELMO模…...

数字化产品经理的金字塔能力模型

在企业数字化转型的浪潮下&#xff0c;要求IT团队更加主动的服务业务、赋能业务&#xff0c;而数字化产品经理正是IT、业务融合的桥梁&#xff0c;该岗位需要具备业务、技术、商业的复合知识结构&#xff0c;并且拥有很强的自驱力。那么数字化产品经理在企业如何产生价值、赋能…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

&#x1f31f; 什么是 MCP&#xff1f; 模型控制协议 (MCP) 是一种创新的协议&#xff0c;旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议&#xff0c;它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)

引言 在人工智能飞速发展的今天&#xff0c;大语言模型&#xff08;Large Language Models, LLMs&#xff09;已成为技术领域的焦点。从智能写作到代码生成&#xff0c;LLM 的应用场景不断扩展&#xff0c;深刻改变了我们的工作和生活方式。然而&#xff0c;理解这些模型的内部…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...