Python实现WOA智能鲸鱼优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战
说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。


1.项目背景
鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法,其优点在于操作简单,调整的参数少以及跳出局部最优的能力强。
本项目通过WOA智能鲸鱼优化算法寻找最优的参数值来优化BP神经网络回归模型。
2.数据获取
本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:
| 编号 | 变量名称 | 描述 |
| 1 | x1 | |
| 2 | x2 | |
| 3 | x3 | |
| 4 | x4 | |
| 5 | x5 | |
| 6 | x6 | |
| 7 | x7 | |
| 8 | x8 | |
| 9 | x9 | |
| 10 | x10 | |
| 11 | y | 因变量 |
数据详情如下(部分展示):

3.数据预处理
3.1 用Pandas工具查看数据
使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看
使用Pandas工具的info()方法查看数据信息:
从上图可以看到,总共有11个变量,数据中无缺失值,共2000条数据。
关键代码:

3.3 数据描述性统计
通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:

4.探索性数据分析
4.1 y变量直方图
用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。
4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。
5.特征工程
5.1 建立特征数据和标签数据
关键代码如下:

5.2 数据集拆分
通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建WOA智能鲸鱼优化算法优化BP神经网络回归模型
主要使用WOA智能鲸鱼优化算法优化BP神经网络回归算法,用于目标回归。
6.1 WOA智能鲸鱼优化算法寻找的最优参数
最优参数:

6.2 最优参数值构建模型
| 编号 | 模型名称 | 参数 |
| 1 | BP神经网络回归模型 | units=best_units |
| 2 | epochs=best_epochs |
6.3 最优参数模型摘要信息

6.4 最优参数模型网络结构

6.5 最优参数模型训练集测试集损失曲线图

7.模型评估
7.1 评估指标及结果
评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。
| 模型名称 | 指标名称 | 指标值 |
| 测试集 | ||
| BP神经网络回归模型 | R方 | 0.9971 |
| 均方误差 | 108.7526 | |
| 可解释方差值 | 0.9971 | |
| 平均绝对误差 | 8.6383 | |
从上表可以看出,R方0.9971,为模型效果较好。
关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。
8.结论与展望
综上所述,本文采用了WOA智能鲸鱼优化算法寻找BP神经网络回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。
# 本次机器学习项目实战所需的资料,项目资源如下:# 项目说明:链接:https://pan.baidu.com/s/12c4W2khpKdDHYOJ0yL5Zag
提取码:mt59
更多项目实战,详见机器学习项目实战合集列表:
机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客
相关文章:
Python实现WOA智能鲸鱼优化算法优化BP神经网络回归模型(BP神经网络回归算法)项目实战
说明:这是一个机器学习实战项目(附带数据代码文档视频讲解),如需数据代码文档视频讲解可以直接到文章最后获取。 1.项目背景 鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提…...
【机器学习基础】机器学习入门(2)
🚀个人主页:为梦而生~ 关注我一起学习吧! 💡专栏:机器学习 欢迎订阅!后面的内容会越来越有意思~ 💡往期推荐:【机器学习基础】机器学习入门(1) 💡…...
C#中在.NET 7.0控制台应用使用ADO.NET的方法
目录 一、新建.NET Framwork类、通过ADO.NET访问数据库并生成库 1.操作流程 2.库源码 3.生成库 二、再建 .NET 7.0控制台应用、依赖像引用库 1. 操作流程 2.program.cs源码 3.在program.cs中查看类Class1定义 作者在上一篇文章中曾说过.NET 7.0框架下不支持ADO…...
垃圾回收(GC)
目录 什么是垃圾,什么是垃圾回收? 为什么要GC?(利弊) 怎么判断是垃圾 引用计数法: <...
【无标题】通用工作站设计方案:ORI-D3R600服务器-多路PCIe3.0的双CPU通用工作站
ORI-D3R600服务器-多路PCIe3.0的双CPU通用工作站 一、机箱功能和技术指标: 系统 系统型号 ORI-SR630 主板支持 EEB(12*13)/CEB(12*10.5)/ATX(12*9.6)/Micro ATX 前置硬盘 最大支持8个3.5寸(兼容25寸)SATA硬盘 2*2.5(后置) 电源类型 CRPS元余电源࿰…...
HarmonyOS元服务实现今天吃什么
一、前言 作为一个职业打工人,每天点外卖吃啥东西都有选择综合症,突发奇想让程序帮我们随机选择一个吃的,是不是可以解决我们的选择问题呢,说干就干,我们就使用HarmonyOS元服务实现一下这个功能。为什么选择这个Harmon…...
激活函数的本质
激活函数(Activation Function) 是神经网络中的一种函数,它接受一个输入(通常是神经元的加权和)并产生一个输出作为神经元的最终输出。激活函数的作用是引入非线性性,使神经网络能够学习复杂的模式和关系。…...
[工业自动化-18]:西门子S7-15xxx编程 - 软件编程 - PLC用于工业领域的嵌入式系统:硬件原理图、指令系统、系统软件架构、开发架构等
目录 前言: 一、PLC的硬件电路原理 1.1 硬件框图 1.2 硬件模块详解 (1)CPU (2)存储器 (3)输入/输出(I/O)模块 (4)编程器 (5&a…...
【C++】——运算符重载
🎃个人专栏: 🐬 算法设计与分析:算法设计与分析_IT闫的博客-CSDN博客 🐳Java基础:Java基础_IT闫的博客-CSDN博客 🐋c语言:c语言_IT闫的博客-CSDN博客 🐟MySQL:…...
怎么理解独立机器和虚拟机
独立服务器:顾名思义,就是一个放在机房的实实在在的物理服务器,一个单独的主机(具有性能高,处理速度快等优点,但 也有价格高,可扩展性不强等缺点) vps:虚拟专用服务器,一…...
以太网和局域网
计算机网络的定义 计算机网络是一个将分散的、具有独立功能的计算机,通过通信设备与线路连接起来,由根据协议编写的软件来实现的资源共享和信息传递的系统 计算机网络的分类 广域网是互联网的核心部分 局域网 常见的局域网拓扑结构有4大类:…...
【Git】第三篇:基本操作(配置本地仓库)
初次使用git需要设置你的用户名以及邮箱,这将作为当前机器git的标识,如果你用它来下载远程仓库一些需要登录权限的仓库会要求登录,git默认使用配置邮箱以及用户名登入,但会要求你手动输入密码。 配置本地仓库:git con…...
JS中sort排序
在我们JS排序中,有许多排序的方法,比如冒泡排序、选择排序等等。这次我为大家介绍一下sort排序! sort 按照 Unicode code 位置排序,默认升序 默认情况下,sort()会按照升序重新排序数组,即最小值在前最大值…...
【现场问题】datax中write部分为Oracle的时候插入clolb类型字段,插入的数据为string且长度过场问题
datax的Oraclewriter 报错显示查询报错展示查找datax中的数据插入模块 报错显示 occurred during batching: ORA-01704: string literal too long 查询报错展示 基本上查到的都是这样的,所以锁定是clob的字段类型的问题,而且是只有Oracle出问题&#…...
ASK、PSK、FSK的调制与解调
ASK、PSK、FSK的调制与解调 本文主要涉及数字信号的调制与解调,内容包括:2ASK、2PSK、2FSK的调制与解调以及频谱分析 关于通信原理还有其他文章可参考: 1、信息量、码元、比特、码元速率、信息速率详细解析——实例分析 2、模拟系统的AM信号的…...
基于XML的声明式事务
场景模拟 参考基于注解的声明式事务 修改Spring的配置文件 将Spring配置文件中去掉tx:annotation-driven标签,并添加配置: <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org…...
力扣labuladong一刷day9滑动窗口共4题
力扣labuladong一刷day9滑动窗口共4题 文章目录 力扣labuladong一刷day9滑动窗口共4题一、76. 最小覆盖子串二、567. 字符串的排列三、438. 找到字符串中所有字母异位词四、3. 无重复字符的最长子串 一、76. 最小覆盖子串 题目链接:https://leetcode.cn/problems/m…...
ubuntu开机系统出错且无法恢复。请联系系统管理员。
背景: ubuntu22.04.2命令行,执行自动安装系统推荐显卡驱动命令,字体变大,重启后出现如下图错误,无法进入系统,无法通过CTRLALTF1-F3进入TTY模式。 解决办法: 1.首先要想办法进入系统ÿ…...
Transformer详解一:transformer的由来和先导知识
目录 参考资料前言一、预训练二、神经网络语言模型(NNLM):预测下一个词one-hot编码的缺陷词向量(word embedding) 三、Word2Vec模型:得到词向量CBOWSkip-gramWord2Vec和NNLM的区别Word2Vec的缺陷 四、ELMO模…...
数字化产品经理的金字塔能力模型
在企业数字化转型的浪潮下,要求IT团队更加主动的服务业务、赋能业务,而数字化产品经理正是IT、业务融合的桥梁,该岗位需要具备业务、技术、商业的复合知识结构,并且拥有很强的自驱力。那么数字化产品经理在企业如何产生价值、赋能…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
Web后端基础(基础知识)
BS架构:Browser/Server,浏览器/服务器架构模式。客户端只需要浏览器,应用程序的逻辑和数据都存储在服务端。 优点:维护方便缺点:体验一般 CS架构:Client/Server,客户端/服务器架构模式。需要单独…...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...
Visual Studio Code 扩展
Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...
【Kafka】Kafka从入门到实战:构建高吞吐量分布式消息系统
Kafka从入门到实战:构建高吞吐量分布式消息系统 一、Kafka概述 Apache Kafka是一个分布式流处理平台,最初由LinkedIn开发,后成为Apache顶级项目。它被设计用于高吞吐量、低延迟的消息处理,能够处理来自多个生产者的海量数据,并将这些数据实时传递给消费者。 Kafka核心特…...
Python常用模块:time、os、shutil与flask初探
一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...
