当前位置: 首页 > news >正文

线性代数-Python-05:矩阵的逆+LU分解

文章目录

  • 1 矩阵的逆
    • 1.1 求解矩阵的逆
  • 2 初等矩阵
    • 2.1 初等矩阵和可逆性
  • 3 矩阵的LU分解
    • 3.1 LU分解的实现

1 矩阵的逆

在这里插入图片描述
在这里插入图片描述

1.1 求解矩阵的逆

def inv(A):if A.row_num() != A.col_num():return Nonen = A.row_num()"""矩阵A+单位矩阵"""ls = LinearSystem(A, Matrix.identity(n))"""对线性系统进行高斯消元,如果没有解,返回none"""if not ls.gauss_jordan_elimination():return None"""高斯消元有解的话,把线性系统的右部分取出,重新构成矩阵,得到矩阵的逆"""invA = [[row[i] for i in range(n, 2*n)] for row in ls.Ab]return Matrix(invA)

在这里插入图片描述

2 初等矩阵

在这里插入图片描述
在这里插入图片描述

2.1 初等矩阵和可逆性

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 矩阵的LU分解

在这里插入图片描述

3.1 LU分解的实现

from .Matrix import Matrix
from .Vector import Vector
from ._globals import is_zerodef lu(matrix):assert matrix.row_num() == matrix.col_num(), "matrix must be a square matrix"n = matrix.row_num() """A是原矩阵的副本"""A = [matrix.row_vector(i) for i in range(n)]"""初始化L,使对角线元素为1"""L = [[1.0 if i == j else 0.0 for i in range(n)] for j in range(n)]for i in range(n):"""看A[i][i]位置是否可以是主元"""if is_zero(A[i][i]):return None, Noneelse: """将主元以下的j位置变为0"""for j in range(i + 1, n):p = A[j][i] / A[i][i] """求加减的系数"""A[j] = A[j] - p * A[i] """将第j行的位置经过加减运算变成0"""L[j][i] = p """将L矩阵相应位置变成相应变换的值"""return Matrix(L), Matrix([A[i].underlying_list() for i in range(n)])

在这里插入图片描述

相关文章:

线性代数-Python-05:矩阵的逆+LU分解

文章目录 1 矩阵的逆1.1 求解矩阵的逆 2 初等矩阵2.1 初等矩阵和可逆性 3 矩阵的LU分解3.1 LU分解的实现 1 矩阵的逆 1.1 求解矩阵的逆 def inv(A):if A.row_num() ! A.col_num():return Nonen A.row_num()"""矩阵A单位矩阵"""ls LinearSyste…...

shell实用脚本命令

1. declare declare 命令是一个非常常用的命令之一,它可以用来声明变量的类型和属性,比如变量的作用域、是否只读等等。 一、declare命令的基本用法 declare 命令可以用来声明变量,其最基本的用法如下:declare 变量名 在上面的命…...

STM32——端口复用与重映射概述与配置(HAL库)

文章目录 前言一、什么是端口复用?什么是重映射?有什么区别?二、端口复用配置 前言 本篇文章介绍了在单片机开发过程中使用的端口复用与重映射。做自我学习的简单总结,不做权威使用,参考资料为正点原子STM32F1系列精英…...

ABZ正交编码 - 异步电机常用的位置信息确定方式

什么是正交编码? ab正交编码器(又名双通道增量式编码器),用于将线性移位转换为脉冲信号。通过监控脉冲的数目和两个信号的相对相位,用户可以跟踪旋转位置、旋转方向和速度。另外,第三个通道称为索引信号&am…...

Linux学习第41天:Linux SPI 驱动实验(二):乾坤大挪移

Linux版本号4.1.15 芯片I.MX6ULL 大叔学Linux 品人间百味 思文短情长 本章的思维导图如下: 二、I.MX6U SPI主机驱动分析 主机驱动一般都是由SOC厂商写好的。不作为重点需要掌握的内容。 三、SPI设备驱动编写流程 1、SP…...

黑客泄露 3500 万条 LinkedIn 用户记录

被抓取的 LinkedIn 数据库分为两部分泄露:一部分包含 500 万条用户记录,第二部分包含 3500 万条记录。 LinkedIn 数据库保存了超过 3500 万用户的个人信息,被化名 USDoD 的黑客泄露。 该数据库在臭名昭著的网络犯罪和黑客平台 Breach Forum…...

Flink SQL -- 反压

1、测试反压: 1、反压: 指的是下游消费数据的速度比上游产生数据的速度要小时会出现反压,下游导致上游的Task反压。 2、测试反压:使用的是DataGen CREATE TABLE words (word STRING ) WITH (connector datagen,rows-per-second…...

快速入门安装及使用git与svn的区别常用命令

一、导言 1、什么是svn? SVN是Subversion的简称,是一个集中式版本控制系统。与Git不同,SVN没有分布式的特性。在SVN中,项目的代码仓库位于服务器上,团队成员通过向服务器提交和获取代码来实现版本控制。SVN记录了每个…...

超详细介绍如何使用 OpenCV 和 BGS 库进行背景扣除

深入研究这些 CV 系统背后的想法,我们可以观察到,在大多数情况下,初始步骤包含背景减除 (BS),这有助于获得视频流中对象的相对粗略和快速的识别,以便对其进行进一步的精细处理。在当前的文章中,我们将介绍几种在准确性和处理时间 BS 方法方面值得注意的算法:SuBSENSE和基…...

STM32F4、GD32F4 内部硬件CRC使用方法和踩坑实录

背景 某项目用到了IC卡刷卡启动功能,程序中对读取IC卡的相关数据后要进行CRC校验,本文介绍如何在STM32F4 GD32F4 平台上使用标准库函数进行CRC硬件校验。 摘要 本文介绍如何在STM32F4、GD32F4 平台上使用标准库函数进行CRC硬件校验。包括容易出现的问题和解决方法。涉及STM3…...

【SpringBoot】序列化和反序列化介绍

一、认识序列化和反序列化 Serialization(序列化)是一种将对象以一连串的字节描述的过程;deserialization(反序列化)是一种将这些字节重建成一个对象的过程。将程序中的对象,放入文件中保存就是序列化&…...

Android 升级软件后清空工厂模式测试进度

Android 升级软件后清空工厂模式测试进度 最近收到项目需求反馈:升级软件后,进入工厂模式测试项,界面显示测试项保留了升级前的测试状态(有成功及失败),需修改升级软件后默认清空测试项测试状态,具体修改参照如下: /…...

Promise原理、以及Promise.race、Promise.all、Promise.resolve、Promise.reject实现;

为了向那道光亮奔过去,他敢往深渊里跳; 于是今天朝着Promise的实现前进吧,写了四个小时,终于完结撒花; 我知道大家没有耐心,当然我也坐的腰疼,直接上代码,跟着我的注释一行行看过去…...

mysql---MHA(高可用)

MHA概述 magterhight availabulity :基于主库的高可用环境下,主故障切换基础要求:主从架构 (一主两从)解决mysql的单点故障问题,一旦数据库崩溃,MHA会在0-30s内这东东完成故障切换。复制方式:半…...

人工智能基础_机器学习032_多项式回归升维_原理理解---人工智能工作笔记0072

现在开始我们来看多项式回归,首先理解多维 原来我们学习的使用线性回归,其实就是一条直线对吧,那个是一维的,我们之前学的全部都是一维的对吧,是一维的,然后是多远的,因为有多个x1,x2,x3,x4... 但是比如我们有一个数据集,是上面这种,的如果用一条直线很难拟合,那么 这个时候,…...

C#截取范围

string[] strs new string[]{"1e2qe","23123e21","3ewqewq","4fewfew","5fsdfds"};var list strs[1..2];Range p 0..3;var list strs[Range];...

用 winget 在 Windows 上安装 kubectl

目录 kubectl 是什么? 安装 kubectl 以管理员身份打开 PowerShell 使用 winget 安装 kubectl 测试一下,确保安装的是最新版本 导航到你的 home 目录: 验证 kubectl 配置 kubectl 是什么? kubectl 是 Kubernetes 的命令行工…...

1 Supervised Machine Learning Regression and Classification

文章目录 Week1OverViewSupervised LearningUnsupervised LearningLinear Regression ModelCost functionGradient Descent Week2Muliple FeatureVectorizationGradient Descent for Multiple RegressionFeature ScalingGradient DescentFeature EngineeringPolynomial Regress…...

Antv/G2 折线图 DataSet 数据展开成指定格式

DataSet 文档 G2 3.2 DataSet 文档 Demo&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8" /><meta name"viewport" content"widthdevice-width, initial-scale1.0" /><m…...

物理问题中常见的分析问题----什么样的函数性质较好

物理问题中常见的积分符号位置交换问题 重极限与累次极限 高数下的定义 累次极限&#xff1a;求极限时需要遵循一定的顺序重极限&#xff1a;任意方向趋于的极限 两者之间的关系&#xff1a; 两者没啥关系存在累次极限存在而不相等的函数...... 求和符号与积分符号互换--逐项积…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)

一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解&#xff0c;适合用作学习或写简历项目背景说明。 &#x1f9e0; 一、概念简介&#xff1a;Solidity 合约开发 Solidity 是一种专门为 以太坊&#xff08;Ethereum&#xff09;平台编写智能合约的高级编…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题&#xff0c;说是客户的导入文件模版想支持部分导入内容的下拉选&#xff0c;于是我就找了easyexcel官网寻找解决方案&#xff0c;并没有找到合适的方案&#xff0c;没办法只能自己动手并分享出来&#xff0c;针对Java生成Excel下拉菜单时因选项过多导…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

《Offer来了:Java面试核心知识点精讲》大纲

文章目录 一、《Offer来了:Java面试核心知识点精讲》的典型大纲框架Java基础并发编程JVM原理数据库与缓存分布式架构系统设计二、《Offer来了:Java面试核心知识点精讲(原理篇)》技术文章大纲核心主题:Java基础原理与面试高频考点Java虚拟机(JVM)原理Java并发编程原理Jav…...