数据库系统原理与实践 笔记 #8
文章目录
- 数据库系统原理与实践 笔记 #8
- 关系数据库设计(续)
- 规范化(Normalization)
- 范式(Normal Form)
- 第一范式
- 第二范式
- Boyce-Codd范式(BCNF)
- 将模式分解成BCNF
- BCNF和保持依赖
- 第三范式
- 函数依赖理论
- 正则覆盖
- 无关属性
- 无关属性的验证
- 无损分解
- 保持依赖
数据库系统原理与实践 笔记 #8
关系数据库设计(续)
规范化(Normalization)
范式(Normal Form)
- 各种范式之间包含关系如下:
5 N F ⊂ 4 N F ⊂ B C N F ⊂ 3 N F ⊂ 2 N F ⊂ 1 N F 5NF\subset4NF\subset BCNF\subset3NF\subset2NF\subset1NF 5NF⊂4NF⊂BCNF⊂3NF⊂2NF⊂1NF - 某一关系模式R最高属于第n范式,可简记为 R ∈ n N F R\in nNF R∈nNF
第一范式
- 如果某个域的元素被认为是不可分的单元,那么这个域就是原子的,如果一个关系模式R的所有属性域都是原子的,我们称关系模式R属于第一范式
- 非原子的值会造成复杂存储及数据冗余
第二范式
- 定义:若关系模式 R ∈ 1 N F R\in 1NF R∈1NF,且在 F + F^+ F+中每一个非主属性完全函数依赖于候选码,则 R ∈ 2 N F R\in 2NF R∈2NF
Boyce-Codd范式(BCNF)
- 具有函数依赖集F的关系模式R属于BCNF的条件是:对所有 F + F^+ F+中形如 α → β \alpha\rightarrow\beta α→β的函数依赖( α ⊆ R \alpha\subseteq R α⊆R且 β ⊆ R \beta\subseteq R β⊆R),下面至少有一个成立:
- α → β \alpha\rightarrow\beta α→β是平凡的函数依赖(即 β ⊆ α \beta\subseteq\alpha β⊆α)
- α \alpha α是模式R的一个超码
- 另一个判断准则:在关系模式R(U,F)中,如果 F + F^+ F+ 中的每一个非平凡函数依赖的决定属性集都包含候选码,则 r ( R ) ∈ B C N F r(R)\in BCNF r(R)∈BCNF
- BCNF范式:排除了任何属性(包括主属性和非主属性)对候选码的部分依赖和传递依赖,也排除了主属性之间的传递依赖
将模式分解成BCNF
- 假设有模式R,及其一个非平凡依赖 α → β \alpha\rightarrow\beta α→β不属于BCNF,那么我们可以将R分解成: ( α ∪ β ) (\alpha\cup\beta) (α∪β)和 ( R − ( β − α ) ) (R-(\beta-\alpha)) (R−(β−α))
BCNF和保持依赖
- 检查包括各种约束(码、check子句、函数依赖、断言等)的开销是很大的,但是如果只涉及到单个关系,检查约束的开销相对较低
- 如果F上的每一个函数依赖都在其分解后的一个关系上成立,那么这个分解是保持依赖的
第三范式
- 具有函数依赖集F的关系模式R属于第三范式的条件是:对 F + F^+ F+ 中所有形如 α → β \alpha\rightarrow\beta α→β的函数依赖中,至少有以下之一成立:
- α → β \alpha\rightarrow\beta α→β是一个平凡的函数依赖(即 β ⊆ α \beta\subseteq\alpha β⊆α)
- α \alpha α是R的一个超码啊
- β − α \beta-\alpha β−α的每个属性A都包含在R的候选码中
- 第三个条件是BCNF的一个最小放宽:即允许存在主属性对候选码的传递依赖和部分依赖,在函数依赖集F中用来满足保持某些函数依赖
- 等价定义:
- 关系模式R(U,F)中,若不存在这样的码X、属性组Y及非主属性Z( Z ⊈ Y Z\nsubseteq Y Z⊈Y),使得 X → Y ( Y ↛ X ) , Y → Z X\rightarrow Y(Y\nrightarrow X),Y\rightarrow Z X→Y(Y↛X),Y→Z,则称R(U,F) ∈ \in ∈ 3NF
- 具有函数依赖集F的关系模式R属于3NF,则R中任何非主属性A既不部分依赖于码也不传递依赖于R的码
函数依赖理论
正则覆盖
- 函数依赖集可能存在冗余依赖(这些依赖可以从其他依赖中推导出来)
- 直观上,F的正则覆盖 F c F_c Fc没有任何冗余依赖或存在冗余部分的依赖
- F c F_c Fc具有和F相同的函数依赖集闭包。其意义在于:验证 F c F_c Fc比验证F更容易,3NF算法必备
无关属性
- 如果去除函数依赖中的一个属性不改变该函数依赖集的必报,则称该属性是无关属性
- 形式化定义:考虑函数依赖集 F F F及其 F F F中函数依赖 α → β \alpha\rightarrow\beta α→β:
- 如果 A ∈ α A\in\alpha A∈α并且 F F F逻辑蕴含( F − { α → β } ∪ { ( α − A ) → β } F-\{\alpha\rightarrow\beta\}\cup\{(\alpha-A)\rightarrow\beta\} F−{α→β}∪{(α−A)→β}),则属性A在 α \alpha α中是无关的
- 如果 A ∈ β A\in\beta A∈β并且函数依赖集( F − { α → β } ∪ { α → ( β − A ) } F-\{\alpha\rightarrow\beta\}\cup\{\alpha\rightarrow(\beta-A)\} F−{α→β}∪{α→(β−A)})逻辑蕴含F,则属性A在 β \beta β中是无关的
无关属性的验证
- 验证方法:考虑函数依赖集F及F中的函数依赖 α → β \alpha\rightarrow\beta α→β,验证属性 A ∈ α A\in\alpha A∈α是不是多余的
无损分解
- 对于 R = ( R 1 , R 2 ) R=(R_1,R_2) R=(R1,R2),我们要求模式 R R R上的所有可能关系r都有 r = ∏ R 1 ( r ) ⋈ ∏ R 2 ( r ) r=\prod_{R_1}(r)\bowtie\prod_{R_2}(r) r=∏R1(r)⋈∏R2(r)
- 如果下面的依赖中至少有一个属于 F + F^+ F+,那么将R分解成 R 1 R_1 R1和 R 2 R_2 R2是无损分解连接:
- R 1 ∩ R 2 → R 1 R_1\cap R_2\rightarrow R_1 R1∩R2→R1
- R 1 ∩ R 2 → R 2 R_1\cap R_2\rightarrow R_2 R1∩R2→R2
- 即 R 1 ∩ R 2 R_1\cap R_2 R1∩R2是 R 1 R_1 R1或 R 2 R_2 R2的超码
- 上述函数依赖测试只是无损连接的一个充分条件,只有当所有约束都是函数依赖时,它才是必要条件
保持依赖
- F为模式R上的一个函数依赖集, R 1 , R 2 , . . . , R n R_1,R_2,...,R_n R1,R2,...,Rn为R的一个分解,F在 R i R_i Ri上的限定是 F + F^+ F+中所有只包含 R i R_i Ri中属性的函数依赖的集合 F i F_i Fi
相关文章:
数据库系统原理与实践 笔记 #8
文章目录 数据库系统原理与实践 笔记 #8关系数据库设计(续)规范化(Normalization)范式(Normal Form)第一范式第二范式Boyce-Codd范式(BCNF)将模式分解成BCNFBCNF和保持依赖第三范式 函数依赖理论正则覆盖无关属性无关属性的验证无损分解保持依赖 数据库系统原理与实践 笔记 #8 …...
Ubuntu 和 Windows 文件互传
FTP 服务 FTP 采用 Internet 标准文件传输协议 FTP 的用户界面, 向用户提供了一组用来管理计算机之间文件传输的应用程序。在开发的过程中会频繁的在 Windows 和 Ubuntu 下进行文件传输,比如在 Windwos 下进行代码编写,然后将编写好的代码拿到…...
如何在WPF应用程序中全局捕获异常
在WPF (Windows Presentation Foundation) 应用程序中,你可以使用 AppDomain.CurrentDomain.UnhandledException 事件来全局捕获未处理的异常。这个事件会在应用程序中的任何地方发生未处理的异常时触发。以下是一个简单的例子,演示如何在WPF应用程序中全…...
自定义Matplotlib中的颜色映射(cmap)
要自定义Matplotlib中的颜色映射(cmap),您可以按照以下步骤进行操作: 导入所需的库: import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap创建自定义颜色映…...
Ansible的filter
环境 控制节点:Ubuntu 22.04Ansible 2.10.8管理节点:CentOS 8 filter 使用filter可以对数据做操作,比如把JSON数据转换为YAML数据,从URL中解析出hostname,提取字符串的SHA1哈希值,做数学运算,…...
Qt绘制各种图表
绘制柱状图: void MainWindow::iniBarChart() { //柱状图初始化QChart *chart new QChart(); //创建chartchart->setTitle("Barchart演示");chart->setAnimationOptions(QChart::SeriesAnimations);ui->chartViewBar->setChart(chart); //为…...
【科研新手指南4】ChatGPT的prompt技巧 心得
ChatGPT的prompt心得 写在最前面chatgpt咒语1(感觉最好用的竟然是这个,简单方便快捷,不需要多轮对话)chatgpt思维链2(复杂任务更适用,简单任务把他弄复杂了)机理chatgpt完整咒语1(感…...
龙蜥社区联合浪潮信息发布《eBPF技术实践白皮书》(附下载链接)
随着 eBPF 技术的高速发展,eBPF 已成为 Linux 内核顶级子系统,并扩展到内核网络、存储、内存、调度和安全等子模块。这种可编程底座内核框架构建了全系统,是云计算、运维和安全等领域技术创新的基础。 龙蜥社区在 eBPF 领域进行了广泛的实践…...
屏幕截图软件 Snagit mac中文版软件特点
Snagit mac是一款屏幕截图和视频录制软件,它可以帮助用户快速捕捉屏幕上的任何内容,并将其编辑、标注和共享。 Snagit mac软件特点 多种截图模式:支持全屏截图、窗口截图、区域截图、延时截图等多种截图模式,满足不同用户的需求。…...
四、Ribbon负载均衡
目录 一、负载均衡流程 1、我通过浏览器直接访问userservice/user/1,无法访问,说明是负载均衡做了相应的处理 2、我们来看一下代码中负载均衡的流程是怎样的 3、图像流程 二、负载均衡策略 1、修改负载均衡策略 (方式一) &a…...
【Git】第二篇:基本操作(创建本地仓库)
我们知道,git是一个版本控制器,可以帮我们控制管理电脑上所有格式的文档。 而我们需要使用git管理文件的时候,我们必须将这些文件放到git仓库中,只有在git仓库中的文件才可以被我们的git追踪管理 创建本地仓库 创建本地仓库是需…...
vuex——重置vuex数据
需求描述 登出系统时,需将 vuex 中存储的数据,恢复为最初的默认状态。 实现方法 通过 replaceState 方法,将最初的 vuex 的 state 数据作为参数传入即可 完整代码范例 src\store\index.js import Vue from "vue"; import Vuex fro…...
WebSphere Liberty 8.5.5.9 (三)
WebSphere Liberty 8.5.5.9 将资源先下载,后期本地安装 下载 passwordUtilities-1.0 D:\wlp-webProfile7-java8-8.5.5.9\wlp\bin>installUtility find password 正在建立与已配置存储库的连接... 此过程可能要花几分钟完成。已成功连接至所有已配置的存储库。…...
如何区分一个项目是react还react native
要区分一个项目是 React 还是 React Native,你可以关注以下几个方面: 项目目录结构:React 和 React Native 项目通常具有不同的目录结构。React 项目中的源代码通常位于一个名为 "src" 或 "app" 的文件夹中,包…...
网易有道开源语音合成引擎“易魔声”
概述 11 月 10 日,网易有道正式上线“易魔声”开源语音合成(TTS)引擎,所有用户可免费在开源社区 GitHub 进行下载使用,通过其提供的 web 界面及批量生成结果的脚本接口,轻松实现音色的情感合成与应用。 据…...
[量子计算与量子信息] 2.1 线性代数
2.1 线性代数 符号对照表 量子力学中,向量使用 ∣ ψ ⟩ \ket \psi ∣ψ⟩ (ket)来表示,可以理解为一个列向量。其对偶向量为 ⟨ ψ ∣ \bra \psi ⟨ψ∣ ,可以理解为行向量。 向量空间中零向量直接用 0 0 0 表示, ∣ 0 ⟩ \…...
【PG】PostgreSQL 目录结构
目录 1 软件安装目录 2 数据文件目录 base/:存储每个数据库的基本数据文件 global/:包含了全局性质的系统表空间文件 pg_tblspc/:包含了表空间的符号链接 pg_twophase/:包含了两阶段提交中使用的文件 pg_stat_tmp/ÿ…...
H5游戏源码分享-超级染色体小游戏
H5游戏源码分享-超级染色体小游戏 游戏玩法 不断地扩大发展同颜色的色块 用最少的步数完成游戏 <!DOCTYPE html> <html><head><meta charset"UTF-8"><meta name"viewport"content"widthdevice-width,user-scalableno,init…...
NOIP 2017 宝藏----Java题解
目录 NOIP 2017 宝藏 题目描述 输入描述: 输出描述: 输入 输出 说明 输入 输出 说明 备注: 代码实现: NOIP 2017 宝藏 时间限制:C/C 1秒,其他语言2秒 空间限制:C/C 262144K,其他语言524288K 64bit IO For…...
数据结构和算法的重要性
目录 1.什么是数据结构? 2.什么是算法? 3.数据结构和算法的重要性 4.如何学好数据结构和算法 1.什么是数据结构? 数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合 …...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
Netty从入门到进阶(二)
二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...
三分算法与DeepSeek辅助证明是单峰函数
前置 单峰函数有唯一的最大值,最大值左侧的数值严格单调递增,最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值,最小值左侧的数值严格单调递减,最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...
什么是VR全景技术
VR全景技术,全称为虚拟现实全景技术,是通过计算机图像模拟生成三维空间中的虚拟世界,使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验,结合图文、3D、音视频等多媒体元素…...
