当前位置: 首页 > news >正文

大数据开发面试(一)

1、Kafka 和 Flume 的应用场景?

Kafka 和 Flume 的应用场景如下:

  1. Kafka:定位消息队列,适用于多个生产者和消费者共享一个主题队列的场景。适用于需要高吞吐量可扩展性容错能力的场景。主要用于大数据处理、实时数据流分析和日志收集等场景。

  2. Flume:定位数据传输,主要用于将数据从源头传输到目标存储系统。适用于需要将大量数据发送到 HDFS、HBase 等存储系统的场景。具有较强的可靠性可扩展性集成 Hadoop 安全特性的特点。

总之,Kafka 更适合用于消息处理和实时数据流分析场景,而 Flume 更适合用于大数据传输和数据存储场景。根据实际需求选择合适的技术。

2、LightGBM和XGBoost的使用场景有什么不一样?

LightGBM和XGBoost都是梯度提升框架,但它们的使用场景有所不同。

XGBoost在处理数据时,采用level-wise的分裂策略,对每一层所有节点进行无差别分裂,这可能导致一些节点的增益非常小,对结果影响不大,但XGBoost也会进行分裂,带来不必要的开销。因此,XGBoost更适用于处理大规模数据集,尤其是那些需要复杂计算和内存占用量较大的情况

LightGBM则采用了leaf-wise的分裂策略,在当前所有叶子节点中选择分裂收益最大的节点进行分裂,这种策略更容易陷入过拟合,因此需要限制最大深度以避免过拟合。然而,LightGBM的优势在于其更快的训练速度和更好的数据处理能力。它通过采用基于直方图的方法进行特征离散化和数据划分,显著减少了计算复杂度和内存占用。当处理大规模数据集时,这种优势尤其明显。此外,当数据集存在大量的稀疏特征时,LightGBM可以更好地处理,因为它使用了稀疏特征优化算法。因此,LightGBM更适合处理大规模稀疏数据集和高维稀疏数据处理

综上所述,LightGBM和XGBoost各有其优点和使用场景。XGBoost更适合处理大规模数据集,而LightGBM则更适合处理大规模稀疏数据集和高维稀疏数据处理。在实际应用中,用户可以根据自己的数据特点选择合适的模型。

3、做ETL的时候遇到数据倾斜怎么处理?小文件呢?

数据倾斜是指在ETL(Extract-Transform-Load)过程中,数据分布不均匀,导致某些节点处理数据量过大,而其他节点处理数据量较小的情况。处理数据倾斜的方法主要有以下几种:

  1. 采样:对于倾斜的数据集进行采样,使得数据集分布更加均匀。

  2. 数据分区:将数据按照某个字段进行分区,从而减少每个分区的数据量,减轻数据处理压力。

  3. 增加资源:为处理倾斜数据的节点增加资源,如CPU、内存等,以提高数据处理速度。

  4. 使用分布式计算框架:使用分布式计算框架,如Spark、Hadoop等,将数据处理任务分配到多个节点上,提高数据处理效率。

  5. 数据预处理:在ETL之前,对数据进行预处理,如数据清洗、数据合并等,减少数据倾斜的发生。

  6. 使用专用算法:针对数据倾斜的问题,可以尝试使用一些专用算法,如MapReduce、Spark等,提高数据处理效率。

  7. 调整参数:调整ETL过程中的参数,如并发度、缓冲区大小等,以提高数据处理效率。

在做ETL(Extract-Transform-Load,数据提取、转换和加载)时,如果出现大量小文件,可以考虑以下几种处理方法:

  1. 合并小文件:使用Linux命令(如catgrepawk等)或Python脚本将小文件合并成一个或多个大文件。

  2. 压缩小文件:使用压缩工具(如gzipbzip2等)将小文件压缩成一个或多个压缩文件。

  3. 使用分布式文件系统:使用Hadoop、Spark等分布式文件系统来处理大量小文件,提高处理效率。

  4. 优化数据处理流程:调整ETL流程,减少产生小文件的情况,例如在数据提取阶段就尽量减少小文件的产生。

  5. 使用专门的ETL工具:使用专门针对大量小文件的ETL工具,如Apache NiFiTalend等。

需要注意的是,具体处理方法需要根据实际需求和场景进行选择和调整。

4、已知成绩表和学生表,查询各科成绩前三名的记录?排序相关的窗口函数除了rank还有什么?

假设成绩表名为score_table,学生表名为student_table,学生表中有student_id,姓名,科目,成绩等字段,成绩表中有score_id,student_id,科目,成绩等字段。

SQL查询各科成绩前三名的记录可以这样写:

SELECTstudent_table.student_id,student_table.姓名,score_table.科目,score_table.成绩
FROMscore_table
INNER JOINstudent_table
ONscore_table.student_id = student_table.student_id
ORDER BYscore_table.成绩DESC
LIMIT3;

这个查询首先通过JOIN连接成绩表和学生表,然后按照成绩降序排序,最后取出前三名的记录。

排序相关的窗口函数除了rank,还有dense_rankpercent_rankntilerow_number等。这些函数都可以在窗口函数中用来对数据进行排序和分组。

5、Hive SQL优化性能的原则是什么?

Hive SQL优化性能的原则主要包括以下几点:

  1. 选择适当的数据存储格式:根据数据的特点和查询需求,选择适合的存储格式(如Parquet、ORC等),以提高查询性能。

  2. 索引和分区:在合适的列上创建索引和分区,以便快速过滤和查找数据。

  3. 查询优化:使用MapJoinReduceJoinFilter等查询优化技术,减少数据传输和计算量。

  4. 分桶和聚合:在需要统计或聚合的列上使用分桶,提高数据处理的效率。

  5. 数据压缩:对数据进行压缩,降低存储和传输成本。

  6. 参数化查询:使用参数化查询,避免重复计算相同的查询。

  7. 查询计划:分析查询计划,找出性能瓶颈,并进行相应的优化。

  8. 数据仓库和数据湖:根据业务需求,合理划分数据仓库和数据湖,实现数据的有序存储和管理。

  9. 异构计算:利用多核CPU、GPU等硬件资源,提高计算性能。

  10. 监控和调优:定期监控Hive SQL的性能,根据监控结果进行调优。

相关文章:

大数据开发面试(一)

1、Kafka 和 Flume 的应用场景? Kafka 和 Flume 的应用场景如下: Kafka:定位消息队列,适用于多个生产者和消费者共享一个主题队列的场景。适用于需要高吞吐量、可扩展性和容错能力的场景。主要用于大数据处理、实时数据流分析和日…...

softmax的高效CUDA编程和oneflow实现初步解析

本文参考了添加链接描述,其中oneflow实现softmax的CUDA编程源代码参考链接添加链接描述 关于softmax的解读以及CUDA代码实现可以参考本人之前编写的几篇文章添加链接描述,添加链接描述,添加链接描述 下面这个图片是之前本人实现的softmax.cu经过接入python接口,最终和pytor…...

如何解决 Node.js 20 升级中未预期的请求问题

在 Tubi,我们使用 Node.js 为 Web/OTT 应用进行服务端渲染及代理请求。近来,为了从新版本的性能改进和新功能中受益,我们将 Node.js 从 14.x 版本升级到了 20.x。 升级像 Node.js 这样的基础设施绝非易事,尤其是有着许多第三方依…...

no tests were found

将带有Test的方法返回类型设为void...

泛型擦除是什么

//在编译阶段使用泛型,运行阶段取消泛型,就是擦除. //因为泛型其实只是在编译器中实现的而虚拟机并不认识泛型类项,所以要在虚拟机中将泛型类型进行擦除, //擦除是将泛型以其父类代替,如String变成了object等. //在使用的时候还是进行带强制类型转化,只不过这是比较安全的转换,…...

7、线性数据结构-切片

切片slice 容器容量可变,所以长度不能定死长度可变,元素个数可变底层必须依赖数组,可以理解它依赖于顺序表,表现也像个可变容量和长度顺序表引用类型,和值类型有区别 定义切片 var s1 []int //长度、容量为0的切片&…...

linux grub2 不引导修复 grub2-install:error:/usr/lib/grub/x86_64-efi/modinfo.sh

系统部署在物理机上,开机后一直pxe不进系统,怀疑GRUB丢失。 查看bios 里 采用uefi 启动方式, 无硬盘系统引导选项, 且BMC设置为硬盘永久启动也无效。 挂载光驱ISO进入救援模式,sda为系统盘,重装grub报错 grub2-inst…...

建筑楼宇智慧能源管理系统,轻松解决能源管理问题

随着科技的进步与人们节能减排意识的不断增强,建筑楼宇是当下节能减排的重要工具。通过能源管理平台解决能效管理、降低用能成本、一体化管控、精细化管理和服务提供有力支撑。 建筑楼宇智慧能源管理系统是一种利用先进手段,采用微服务架构,…...

【洛谷算法题】P5711-闰年判断【入门2分支结构】

👨‍💻博客主页:花无缺 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P5711-闰年判断【入门2分支结构】🌏题目描述🌏输入格式&a…...

ArcGIS10.8 连接 PostgreSQL 及遇到的两个问题

前提 以前同事用过我的电脑连PostgreSQL,失败了。当时不知道原因,只能使用GeoServer来发布数据了。现在终于搞明白了,原因是ArcGIS10.2版本太老,无法连接PostgreSQL9.4。参考这里 为了适应时代的发展,那我就用新的Ar…...

深入跨域 - 从初识到入门 | 京东物流技术团队

前言 跨域这两个字就像一块狗皮膏药一样黏在每一个前端开发者身上,无论你在工作上或者面试中无可避免会遇到这个问题。如果在网上搜索跨域问题,会出现许许多多方案,这些方案有好有坏,但是对于阐述跨域的原理和在什么情况下需要用…...

WebSocket真实项目总结

websocket websocket是什么? websocket是一种网络通讯协议。 websocket 是HTML5开始提供的一种在单个TCP链接上进行全双工通讯的协议。 为什么需要websocket? 初次接触websocket,都会带着疑惑去学习,既然已经有了HTTP协议,为什么还需要另一…...

Python 如何实现解释器(Interpreter)设计模式?什么是解释器设计模式?

什么是解释器(Interpreter)设计模式? 解释器(Interpreter)设计模式是一种行为型设计模式,它定义了一种语言文法的表示,并提供了一个解释器,用于解释语言中的句子。该模式使得可以定…...

单片机与PLC的区别有哪些?

单片机与PLC的区别有哪些? 什么是单片机? 单片机(Microcontroller,缩写MCU)是一种集成了中央处理器(CPU)、存储器和输入/输出接口等功能模块的微型计算机系统。它通常被用于嵌入式系统和控制系统中&#x…...

修改浏览器滚动条样式--ios同款

::-webkit-scrollbar{width: 5px;height: 5px; } ::-webkit-scrollbar-thumb{border-radius: 1em;background-color: rgba(50,50,50,.3); } ::-webkit-scrollbar-track{border-radius: 1em;background-color: rgba(50,50,50,.1); } 修改滚动条样式用到的CSS伪类: :…...

python自动化测试selenium核心技术3种等待方式详解

这篇文章主要为大家介绍了python自动化测试selenium的核心技术三种等待方式示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步早日升职加薪 UI自动化测试过程中,可能会出现因测试环境不稳定、网络慢等情况&a…...

苹果手机照片如何导入电脑?无损快速的传输办法分享!

前些天小编的朋友联系到我,说是自己苹果手机里面的照片太多,有好几千张,不知道该怎么快而无损地传到电脑。我想遇到这种情况的不止是小编的朋友,生活中遇到手机照片导入电脑的同学不在少数。不管是苹果手机还是安卓手机&#xff0…...

csh 脚本批量处理文件并将文件扔给程序

文章目录 前言程序批量造 case 并将 cmd 扔给程序运行批量收集数据汇总 前言 Linux下我们经常会写一些shell脚本来辅助我们学习或者工作,从而提高效率。 之前就写过一篇博客:Linux下利用shell脚本批量产生内容有规律变化的文件 程序 批量造 case 并将…...

程序员技能成长树,程序员的曙光

一、背景 初创的计算机公司,主要低市场占有率和日益增长的市场规模之间的矛盾,此时只有一件事情,那就是快速抢占市场,在面对计算机飞速发展的时期,企业广泛的招聘计算机人才进行信息化项目建设,随着公司业…...

灰度图处理方法

做深度学习项目图像处理的时候常常涉及到灰度图处理,这里对自己处理灰度图的方式做一个记录,后续有更新的话会在此更新 一,多维数组可视化 将多维数组可视化为灰度图 img_gray Image.fromarray(img, modeL) # 实现array到image的转换,m…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

反射获取方法和属性

Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...

dify打造数据可视化图表

一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率&#xff0c…...

C++使用 new 来创建动态数组

问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

Java数值运算常见陷阱与规避方法

整数除法中的舍入问题 问题现象 当开发者预期进行浮点除法却误用整数除法时,会出现小数部分被截断的情况。典型错误模式如下: void process(int value) {double half = value / 2; // 整数除法导致截断// 使用half变量 }此时...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...