当前位置: 首页 > news >正文

使用pixy计算群体遗传学统计量

1 数据过滤

过滤参数:过滤掉次等位基因频率(minor allele frequency,MAF)低于0.05、哈达-温伯格平衡(Hardy– Weinberg equilibrium,HWE)对应的P值低于1e-10或杂合率(heterozygosity rates)偏差过大(± 3 SD)的位点:
去除杂合率(heterozygosity rates)偏差过大(± 3 SD)的个体:
假设,基于Plink计算结果,需要移除sample1(高杂合或低杂合):

#vcftools version:
nohup vcftools --vcf snps_filtered.vcf --remove-indels --maf 0.05 --hwe 1e-10 --max-missing 0.8 --min-meanDP 20 --max-meanDP 500 --remove-indv sample1 --recode --stdout > snps_maf0_05_hwe1e-10_missing0_8.vcf &

vcftools生成的文件中会包含命令行输出,使用sed移除:

nohup sed -i '1,30d' snps_maf0_05_hwe1e-10_missing0_8.vcf &

压缩:

bgzip snps_maf0_05_hwe1e-10_missing0_8.vcf
tabix snps_maf0_05_hwe1e-10_missing0_8.vcf.gz

2 计算 F S T 、 D X Y 、 P i F_{ST}、D_{XY}、Pi FSTDXYPi

安装软件包


nohup pixy --stats pi fst dxy --vcf snps_maf0_05_hwe1e-10_missing0_8.vcf.gz --populations pop.txt --window_size 10000 --bypass_invariant_check 'yes' --n_cores 15 --output_folder results &

3 可视化

可视化之前需要将染色体编号替换为数值:

bash ~/gaoyue/GWAs/script/chr_tran.sh raw_results/pixy_dxy.txt results/pixy_dxy.txt
bash ~/gaoyue/GWAs/script/chr_tran.sh raw_results/pixy_fst.txt results/pixy_fst.txt
bash ~/gaoyue/GWAs/script/chr_tran.sh raw_results/pixy_pi.txt results/pixy_pi.txt
#load packages:
library(ggplot2)
library(tidyverse)#---------------------------------------------------------------------------------#
#             1.define a function to convert the pixy outputs                     #
#---------------------------------------------------------------------------------#
pixy_to_long <- function(pixy_files){pixy_df <- list()for(i in 1:length(pixy_files)){stat_file_type <- gsub(".*_|.txt", "", pixy_files[i])if(stat_file_type == "pi"){df <- read_delim(pixy_files[i], delim = "\t")df <- df %>%gather(-pop, -window_pos_1, -window_pos_2, -chromosome,key = "statistic", value = "value") %>%rename(pop1 = pop) %>%mutate(pop2 = NA)pixy_df[[i]] <- df} else{df <- read_delim(pixy_files[i], delim = "\t")df <- df %>%gather(-pop1, -pop2, -window_pos_1, -window_pos_2, -chromosome,key = "statistic", value = "value")pixy_df[[i]] <- df}}bind_rows(pixy_df) %>%arrange(pop1, pop2, chromosome, window_pos_1, statistic)}#---------------------------------------------------------------------------------#
#                      2.use new function we just defined:                        #
#---------------------------------------------------------------------------------#
## Rcau则替换为对应的文件夹
pixy_folder <- "/nfs_fs/nfs3/gaoyue/gaoyue/Fst/Rdeb_Fst/results/"
pixy_files <- list.files(pixy_folder, full.names = TRUE)
pixy_df <- pixy_to_long(pixy_files)#---------------------------------------------------------------------------------#
#                                      3.plot:                                    #
#---------------------------------------------------------------------------------#
# create a custom labeller for special characters in pi/dxy/fst
pixy_labeller <- as_labeller(c(avg_pi = "pi",avg_dxy = "D[XY]",avg_wc_fst = "F[ST]"),default = label_parsed)# plotting summary statistics across all chromosomes
pixy_df %>%mutate(chrom_color_group = case_when(as.numeric(chromosome) %% 2 != 0 ~ "even",chromosome == "X" ~ "even",TRUE ~ "odd" )) %>%mutate(chromosome = factor(chromosome, levels = c(1:22, "X", "Y"))) %>%filter(statistic %in% c("avg_pi", "avg_dxy", "avg_wc_fst")) %>%ggplot(aes(x = (window_pos_1 + window_pos_2)/2, y = value, color = chrom_color_group))+geom_point(size = 0.5, alpha = 0.5, stroke = 0)+facet_grid(statistic ~ chromosome,scales = "free_y", switch = "x", space = "free_x",labeller = labeller(statistic = pixy_labeller,value = label_value))+xlab("Chromsome")+ylab("Statistic Value")+scale_color_manual(values = c("grey50", "black"))+theme_classic()+theme(axis.text.x = element_blank(),axis.ticks.x = element_blank(),panel.spacing = unit(0.1, "cm"),strip.background = element_blank(),strip.placement = "outside",legend.position ="none")+scale_x_continuous(expand = c(0, 0)) +scale_y_continuous(expand = c(0, 0), limits = c(0,NA))

在这里插入图片描述

Ending!

相关文章:

使用pixy计算群体遗传学统计量

1 数据过滤 过滤参数&#xff1a;过滤掉次等位基因频率&#xff08;minor allele frequency&#xff0c;MAF&#xff09;低于0.05、哈达-温伯格平衡&#xff08;Hardy– Weinberg equilibrium&#xff0c;HWE&#xff09;对应的P值低于1e-10或杂合率&#xff08;heterozygosit…...

第十九章总结:Java绘图

19.1&#xff1a;Java绘图类 19.2&#xff1a;绘制图形 package nineteentn; import java.awt.*; import javax.swing.*; public class DrawCircle extends JFrame { private final int OVAL_WIDTH 80; // 圆形的宽 private final int OVAL_HEIGHT 80; // 圆形的高…...

Mybatis-Plus条件构造器QueryWrapper

Mybatis-Plus条件构造器QueryWrapper 1、条件构造器关系介绍 介绍 &#xff1a; 上图绿色框为抽象类 蓝色框为正常类&#xff0c;可创建对象 黄色箭头指向为父子类关系&#xff0c;箭头指向为父类 wapper介绍 &#xff1a; Wrapper &#xff1a; 条件构造抽象类&#xff0…...

python解析wirshark抓包数据

因为工作需要&#xff0c;需要分析wirshark的抓包数据。数据有的是在比特位中。不方便查找。而lua语言又不愿意去学&#xff0c;所以用python解析后&#xff0c;输出日志。帮助分析.1.tcp分析 from dpkt.tcp import TCP from scapy.all import * from datetime import datetim…...

一个用于操作Excel文件的.NET开源库

推荐一个高性能、跨平台的操作Excel文件的.NET开源库。 01 项目简介 ClosedXML是一个.NET第三方开源库&#xff0c;支持读取、操作和写入Excel 2007 (.xlsx&#xff0c; .xlsm)文件&#xff0c;是基于OpenXML封装的&#xff0c;让开发人员无需了解OpenXML API底层API&#xf…...

Web APIs——正则表达式使用

1、什么是正则表达式 正则表达式&#xff08;Regular Expression&#xff09;是用于匹配字符串中字符组合的模式。在JavaScript中&#xff0c;正则表达式也是对象 通常用来查找、替换那些符合正则表达式的文本&#xff0c;许多语言都支持正则表达式 1.1 正则表达式使用场景 例如…...

文件包含学习笔记总结

文件包含概述 ​ 程序开发人员通常会把可重复使用函数或语句写到单个文件中&#xff0c;形成“封装”。在使用某个功能的时候&#xff0c;直接调用此文件&#xff0c;无需再次编写&#xff0c;提高代码重用性&#xff0c;减少代码量。这种调用文件的过程通常称为包含。 ​ 程…...

<C++> 优先级队列

目录 前言 一、priority_queue的使用 1. 成员函数 2. 例题 二、仿函数 三、模拟实现 1. 迭代器区间构造函数 && AdjustDown 2. pop 3. push && AdjustUp 4. top 5. size 6. empty 四、完整实现 总结 前言 优先级队列以及前面的双端队列基本上已经脱离了队列定…...

systemverilog:interface中的modport用法

使用modport可以将interface中的信号分组并指定方向&#xff0c;方向是从modport连接的模块看过来的。简单示例如下&#xff1a; interface cnt_if (input bit clk);logic rstn;logic load_en;logic [3:0] load;logic [7:0] count;modport TEST (input clk, count,output rst…...

VR建筑仿真场景编辑软件有助于激发创作者的灵感和创造力

随着VR虚拟现实技术的不断发展和普及&#xff0c;VR虚拟场景编辑器逐渐成为了VR场景开发重要工具。它对于丰富和完善VR虚拟现实内容的创建和呈现具有重要的意义&#xff0c;为我们的工作和教学带来了许多变化和可能性。 首先&#xff0c;VR虚拟场景编辑器对于提升用户体验具有重…...

8.查询数据

一、单表查询 MySQL从数据表中查询数据的基本语为SELECT语。SELECT语的基本格式是: SELECT {* | <字段列名>} [ FROM <表 1>, <表 2>… [WHERE <表达式> [GROUP BY <group by definition> [HAVING <expression> [{<operator>…...

VB.NET—Bug调试(参数话查询、附近语法错误)

目录 前言: BUG是什么&#xff01; 事情的经过: 过程: 错误一: 错误二: 总结: 前言: BUG是什么&#xff01; 在计算机科学中&#xff0c;BUG是指程序中的错误或缺陷&#xff0c;它通过是值代码中的错误、逻辑错误、语法错误、运行时错误等相关问题&#xff0c;这些问题…...

武汉凯迪正大—锂电池均衡维护仪

产品概况 KDZD885C 电池容量平衡测试系统&#xff0c;主要用于锂电池箱充放电测试及均衡维护&#xff0c;解决锂电池包单芯电压不均衡的痛点&#xff0c;用于快速解决锂电池电压不一致的难题,适用于各锂电池模组电压等级&#xff0c;集单芯放电&#xff0c;充电&#xff0c;均…...

解决服务器中的mysql连接不上Navicat的问题脚本

shell标本&#xff0c;快速解决服务器中的mysql连接不上Navicat的问题 在Linux服务器开发中&#xff0c;mysql的配置文件一般是只允许本地连接 所以想用Navicat进行连接&#xff0c;就需要修改配置和mysql中用户访问表的权限 为了方便&#xff0c;写成了shell脚本 #!/bin/bas…...

Git Flow的简单使用

目录 系列文章目录 一、新建feture下的分支 二、合并分支且删除当前分支 注意&#xff1a;这两个命令都得是在develop分支下进行 一、新建feture下的分支 xxx为自己命名的分支 git flow feature start xxx 二、合并分支且删除当前分支 需要先提交一下当前分支的代码&…...

LOWORD, HIWORD, LOBYTE, HIBYTE的解释

文章目录 实验结论 实验 int 类型大小正常为4Byte 以小端序来看 0x12345678在内存中的存储为 0x78 0x56 0x34 0x120x78在低地址&#xff0c;0x12在高地址 程序输出 #include <stdio.h> #include <string.h> #include<windows.h>int main() {int a 0x12345…...

Centos7.9用rancher来快速部署K8S

什么是 Rancher&#xff1f; Rancher 是一个 Kubernetes 管理工具&#xff0c;让你能在任何地方和任何提供商上部署和运行集群。 Rancher 可以创建来自 Kubernetes 托管服务提供商的集群&#xff0c;创建节点并安装 Kubernetes&#xff0c;或者导入在任何地方运行的现有 Kube…...

NSSCTF第12页(2)

[CSAWQual 2019]Unagi 是xxe注入&#xff0c;等找时间会专门去学一下 XML外部实体&#xff08;XXE&#xff09;注入 - 知乎 【精选】XML注入学习-CSDN博客 【精选】XML注入_xml注入例子-CSDN博客 题目描述说flag在/flag下 发现有上传点&#xff0c;上传一句话木马试试 文件…...

基于单片机的电源切换控制器设计(论文+源码)

1.系统设计 在基于单片机的电源切换控制器设计中&#xff0c;系统功能设计如下&#xff1a; &#xff08;1&#xff09;实现电源的电压检测&#xff1b; &#xff08;2&#xff09;如果电压太高&#xff0c;通过蜂鸣器进行报警提示&#xff0c;继电器进行切换&#xff0c;使…...

机器学习-特征选择:使用Lassco回归精确选择最佳特征

机器学习-特征选择:使用Lassco回归精确选择最佳特征 一、Lasso回归简介1.1 Lasso回归的基本原理1.2 Lasso回归与普通最小二乘法区别二、特征选择的方法2.1 过滤方法2.2 包装方法2.3 嵌入方法三、Lasso的特征选择流程3.1 数据预处理3.2 划分训练集和测试集3.3 搭建Lasso回归模型…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码

目录 一、&#x1f468;‍&#x1f393;网站题目 二、✍️网站描述 三、&#x1f4da;网站介绍 四、&#x1f310;网站效果 五、&#x1fa93; 代码实现 &#x1f9f1;HTML 六、&#x1f947; 如何让学习不再盲目 七、&#x1f381;更多干货 一、&#x1f468;‍&#x1f…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

git: early EOF

macOS报错&#xff1a; Initialized empty Git repository in /usr/local/Homebrew/Library/Taps/homebrew/homebrew-core/.git/ remote: Enumerating objects: 2691797, done. remote: Counting objects: 100% (1760/1760), done. remote: Compressing objects: 100% (636/636…...