当前位置: 首页 > news >正文

线性代数本质系列(二)矩阵乘法与复合线性变换,行列式,三维空间线性变换

本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第二篇

向量究竟是什么?
向量的线性组合,基与线性相关
矩阵与线性相关
矩阵乘法与复合线性变换
三维空间中的线性变换
行列式

逆矩阵,列空间,秩与零空间
克莱姆法则
非方阵
点积与对偶性
叉积
以线性变换眼光看叉积
基变换
特征向量与特征值
抽象向量空间
快速计算二阶矩阵特征值
张量,协变与逆变和秩

文章目录

  • 矩阵乘法与复合线性变换
  • 三维空间中的线性变换
  • 行列式

矩阵乘法与复合线性变换

我们已经知道矩阵是一种线性变换,现在对基向量连续施加两种线性变换,例如,先旋转,再剪切,其实,这在整体上可以看作是一种新的变换,这个新的变换被称为前两种独立变换的“复合变换”。
在这里插入图片描述

这个复合变换的矩阵可以通过追踪基向量的坐标得到,如上图所示,变换后的 i ⃗ \vec{i} i 坐标 [ 1 1 ] \begin{bmatrix} 1\\ 1 \end{bmatrix} [11],变换后的 j ⃗ \vec{j} j 坐标 [ − 1 0 ] \begin{bmatrix} -1\\ 0 \end{bmatrix} [10],那么该复合变换矩阵就可以表示为: [ 1 − 1 1 0 ] \begin{bmatrix} 1 & -1\\ 1 & 0 \end{bmatrix} [1110],当我们求一个向量经过复合变换后的坐标时,可以通过下图右边公式那样直接使用复合变换矩阵,而不需要像下图左边那样对向量连续施加两次单独的变换。
Alt

更一般地,对于矩阵乘法,我们就有了新的认识:他的几何意义是先施加一个变换,再施加另一个变换,施加顺序从右到左,顺序不同得到的结果也不同。

在这里插入图片描述

推广到更一般地数学含义: g ( f ( x ) ) g( f( x)) g(f(x))

根据前面章节学习到的知识,要想求线性变换对向量的作用,首先要得到变换后的基向量的坐标,让我们来看一个例子,假设连续施加两个线性变换 M 1 M_{1} M1 M 2 M_{2} M2
在这里插入图片描述

要想跟踪 i ⃗ \vec{i} i 的去向,先看 M 1 M_{1} M1的第一列,这是经过 M 1 M_{1} M1变换后 i ⃗ \vec{i} i 首先到达的地方: [ e g ] \begin{bmatrix} e\\ g \end{bmatrix} [eg],然后新的 i ⃗ \vec{i} i 要经过 M 2 M_{2} M2的变换后到达最终目的地:
在这里插入图片描述

该结果作为复合矩阵的第一列, j ⃗ \vec{j} j 经过同样的变换过程到达最终目的地,结果为复合变换矩阵第二列,复合变换的最终结果为:
在这里插入图片描述

看,这不就是课堂上老师教的矩阵乘法计算规则嘛,只不过我们是从几何的角度推出来的。

大家可以从几何的角度来自行分析一下矩阵乘法的法则:

交换律: M 1 M 2 ≠ M 2 M 1 M_{1} M_{2} \neq M_{2} M_{1} M1M2=M2M1

结合率:(AB)C=A(BC)

三维空间中的线性变换

前面一直在讨论二维情况,也就是将二维向量映射成二维向量,其实,只要掌握了二维线性变换的核心本质,就能轻松的扩展到更高维的空间中。
二维线性变换

三维空间变换以三维向量为输入,以三维向量为输出,和二维向量一样,一个线性变换是在操纵三维空间中所有的点,变换后保持空间中网格线等距且原点不变。
在这里插入图片描述

与二维一样,三维线性变换也是由基向量的去向完全决定,只不过基向量由 i ⃗ \vec{i} i j ⃗ \vec{j} j 变成了 i ⃗ \vec{i} i j ⃗ \vec{j} j , k ⃗ \vec{k} k ,例如,我们得到变换后三个基向量的坐标,那么由三个新的基向量组成矩阵就是三维线性变换矩阵 [ 1 1 1 0 1 0 − 1 0 1 ] \begin{bmatrix} 1 & 1 & 1\\ 0 & 1 & 0\\ -1 & 0 & 1 \end{bmatrix} 101110101

在这里插入图片描述

要想计算一个向量经过上面的三维变换后的新坐标,同样可以参照二维空间的计算方式,结果向量是基向量的线性组合。

在这里插入图片描述
在这里插入图片描述

同理两个三维矩阵的相乘也可以合并成一个复合变换矩阵,三维变换在计算机图形学中有着广泛的应用。
在这里插入图片描述

三维矩阵的乘法同样遵循二维矩阵乘法的思路。

行列式

前面我们从几何的角度对线性变换有了很直观的认识,其中有的线性变换对空间向外拉伸,有的则是将空间向内挤压。
 向内挤压
向内挤压

  向外拉伸
向外拉伸

有一种方法对于理解这些线性变换很有用,那就是准确测量向内挤压了多少,向外拉伸了多少,更具体地讲就是计算出一个区域增大或减少的比例。

让我们来看一个例子,假设一个线性变换矩阵 [ 3 0 0 2 ] \begin{bmatrix} 3 & 0\\ 0 & 2 \end{bmatrix} [3002],变换前基向量形成的四边形面积为1。

在这里插入图片描述

变换后,如下图,基向量形成一个2*3的矩形,面积为6

在这里插入图片描述

所以我们说这个变换将基向量形成的方格拉伸了6倍,根据线性变换的性质,如下图,所有可形成的区域都被拉伸了同样的大小。

在这里插入图片描述

现在,我们要抛出一个重磅信息:这个面积的变化的比例值就是该线性变换矩阵的行列式,这就是行列式的几何意义。

在这里插入图片描述

如果行列式值大于1,则代表该线性变换矩阵将一个区域进行拉伸,大于0且小于1的数代表缩小,负数代表反方向缩放。

注意,如果一个线性变换矩阵的行列式为0,则代表该变换将一个区域压缩成了一条线或者是一个点,从几何意义上讲,也就是说该变换将空间压缩到了更小的维度上,这在我们后面判断线性方程组是否有解提供了重要依据。

在这里插入图片描述

同理,三维线性变换的行列式代表的则是体积的变换比例,如下图,一个以初始基向量形成的111的立方体经过线性变换后该体积变成了如下图的大小。
在这里插入图片描述

三维变换矩阵的行列式为0,代表空间被压缩成了一个面,或者一个点,如果行列式是负数,说明空间定向已经发生改变,不能用右手定则描述基向量之间的关系。

前面说了行列式的几何意义,那如何求一个矩阵的行列式呢?
在这里插入图片描述

上图是一个行列式的计算公式,那它的几何意义是什么呢?如下图,假设给定一个特殊矩阵 [ a 0 0 d ] \begin{bmatrix} a & 0\\ 0 & d \end{bmatrix} [a00d] i ⃗ \vec{i} i 被缩放了a倍, j ⃗ \vec{j} j 被缩放了d倍,变换前后面积缩放了ad倍,这正符合行列式计算公式的结果。

在这里插入图片描述

前面我们给出了一个特殊的例子,但推广到更一般的矩阵,也是满足上面公式的。
在这里插入图片描述

相关文章:

线性代数本质系列(二)矩阵乘法与复合线性变换,行列式,三维空间线性变换

本系列文章将从下面不同角度解析线性代数的本质,本文是本系列第二篇 向量究竟是什么? 向量的线性组合,基与线性相关 矩阵与线性相关 矩阵乘法与复合线性变换 三维空间中的线性变换 行列式 逆矩阵,列空间,秩与零空间 克…...

Linux-CentOS重要模块

软件包管理器:CentOS使用Yum(Yellowdog Updater, Modified)作为其包管理器。Yum提供了一种方便的方式来安装、更新和删除软件包,并自动解决依赖关系。 RPM:RPM(RPM Package Manager)是CentOS中…...

posix定时器的使用

POSIX定时器是基于POSIX标准定义的一组函数,用于实现在Linux系统中创建和管理定时器。POSIX定时器提供了一种相对较高的精度,可用于实现毫秒级别的定时功能。 POSIX定时器的主要函数包括: timer_create():用于创建一个定时器对象…...

安科瑞煤矿电力监控系统的研究与应用

摘要:作为一个巨大的能源消耗国家,我国每年对煤炭的市场需求巨大。煤炭作为我国点力气和供暖企业的重要原材料,煤矿的开采过程存在着难以消除的风险,我国的煤炭安全问题长期困扰着相关企业和监督部门,也受到社会的广泛…...

高教社杯数模竞赛特辑论文篇-2023年A题:基于机理分析法的定日镜场优化设计模型(附获奖论文及MATLAB代码实现)

目录 摘要 一、 问题重述 1 . 1 问题背景 1 . 2 问题要求 二、 问题分析...

缩点+图论路径网络流:1114T4

http://cplusoj.com/d/senior/p/SS231114D 重新梳理一下题目 我们先建图 x → y x\to y x→y,然后对点分类:原串出现点,原串未出现点。 假如我们对一个原串出现点进行了操作,那么它剩余所有出边我们立刻去操作必然没有影响。所…...

Go语言fyne开发桌面应用程序-环境安装

环境安装 参考https://developer.fyne.io/started/#prerequisites网站 之前的文章介绍了如何安装GO语言这里不在叙述 msys2 首先安装msys2,https://www.msys2.org/ 开始菜单打开MSYS2 执行 $ pacman -Syu$ pacman -S git mingw-w64-x86_64-toolchain注意&#…...

JavaWeb——CSS3的使用

目录 1. CSS概述 2. CSS引入方式 3. CSS颜色显示 4. CSS选择器 4.1. 元素(标签)选择器 4.2. id选择器 4.3. 类选择器 4.4. 三者优先级 5. 盒子模型 1. CSS概述 CSS,全称为“Cascading Style Sheets”,中文译为“层叠样式…...

AR导览小程序开发方案

一、背景介绍 随着科技的不断发展,虚拟现实(VR)和增强现实(AR)技术逐渐被应用于各个领域。其中,AR导览小程序作为一种新兴的导览方式,以其独特的视觉体验和互动性受到了广泛的关注。AR导览小程…...

继承、多态

复习 需求: 编写一个抽象类:职员Employee,其中定义showSalary(int s)抽象方法;编写Employee的子类,分别是销售员Sales和经理Manager,分别在子类中实现对父类抽象方法的重写,并编写测试类Test查看输出结果 package cn.…...

贪吃蛇小游戏代码

框架区 package 结果;import java.awt.Color; import java.awt.EventQueue; import java.awt.Font; import java.awt.Frame; import java.awt.Graphics; import java.awt.Image; import java.util.ArrayList; import java.util.List; import java.util.Random;import javax.s…...

Python数据容器(字典)

字典 1.字典的定义2.字典数据的获取3.字典的嵌套4.嵌套字典的内容获取5.字典的常用操作6.常用操作总结7.遍历字典8.练习 1.字典的定义 同样使用{},不过存储的元素是一个一个的:键值对,语法如下 # 定义字典字面量 {key:value,key:value,...,…...

餐饮展示小程序的作用是什么

餐饮是市场重要的组成部分,尤其是我国八大菜系,各类细分菜数量非常多,并分布在全国,各类大小品牌餐饮商家数量也非常庞大,每个城市的商业街都是一个接一个餐厅,酒类、酒店多样。 餐饮行业经营痛点比较明显…...

33、Flink 的Table API 和 SQL 中的时区

Flink 系列文章 1、Flink 部署、概念介绍、source、transformation、sink使用示例、四大基石介绍和示例等系列综合文章链接 13、Flink 的table api与sql的基本概念、通用api介绍及入门示例 14、Flink 的table api与sql之数据类型: 内置数据类型以及它们的属性 15、Flink 的ta…...

Origin:科研绘图与学术图表绘制从入门到精通

文章目录 一、引言二、安装和启动Origin三、创建和保存图表四、深入学习Origin绘图功能五、应用Origin进行科研绘图和学术图表绘制六、总结与建议《Origin科研绘图与学术图表绘制从入门到精通》亮点内容简介作者简介目录获取方式 一、引言 Origin是一款功能强大的数据分析和科…...

腾讯云标准型SA4服务器AMD处理器性能测评

腾讯云服务器标准型SA4实例CPU采用AMD处理器,新一代腾讯云自研星星海双路服务器,搭配AMD EPYC Genoa处理器,内存采用最新 DDR5,默认网络优化,最高内网收发能力达4500万pps,最高内网带宽可支持100Gbps。阿腾…...

LeetCode 2656. K 个元素的最大和:一次遍历(附Python一行版代码)

【LetMeFly】2656.K 个元素的最大和:一次遍历(附Python一行版代码) 力扣题目链接:https://leetcode.cn/problems/maximum-sum-with-exactly-k-elements/ 给你一个下标从 0 开始的整数数组 nums 和一个整数 k 。你需要执行以下操…...

element-ui中Form表单使用自定义验证规则

data() {const validatePass (rule, value, callback) > {if (value.length < 3) {callback(new Error("密码不能小于3位"));} else {callback();}};return {rules: {password: [{ required: true, trigger: "blur", validator: validatePass },]}}…...

android源码添加adb host支持

本文开始参考在 android 上使用 adb client-CSDN博客&#xff0c;在shell中已经可以使用。但当我想在app中用 String command "/data/local/tmp/adb -s 307ef90dc8128844 shell ls";StringBuilder output new StringBuilder();try {Process process Runtime.getR…...

学习c#的第二天

目录 C# 基本语法 using 关键字 class 关键字 C# 中的注释 成员变量 成员函数 类的实例化 标识符 C# 关键字 C# 基本语法 C# 是一种面向对象的编程语言。在面向对象的程序设计方法中&#xff0c;程序由各种相互交互的对象组成。相同种类的对象通常具有相同的类型&…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

Qt 事件处理中 return 的深入解析

Qt 事件处理中 return 的深入解析 在 Qt 事件处理中&#xff0c;return 语句的使用是另一个关键概念&#xff0c;它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别&#xff1a;不同层级的事件处理 方…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG

TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码&#xff1a;HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...

《Docker》架构

文章目录 架构模式单机架构应用数据分离架构应用服务器集群架构读写分离/主从分离架构冷热分离架构垂直分库架构微服务架构容器编排架构什么是容器&#xff0c;docker&#xff0c;镜像&#xff0c;k8s 架构模式 单机架构 单机架构其实就是应用服务器和单机服务器都部署在同一…...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

VSCode 使用CMake 构建 Qt 5 窗口程序

首先,目录结构如下图: 运行效果: cmake -B build cmake --build build 运行: windeployqt.exe F:\testQt5\build\Debug\app.exe main.cpp #include "mainwindow.h"#include <QAppli...

【字节拥抱开源】字节团队开源视频模型 ContentV: 有限算力下的视频生成模型高效训练

本项目提出了ContentV框架&#xff0c;通过三项关键创新高效加速基于DiT的视频生成模型训练&#xff1a; 极简架构设计&#xff0c;最大化复用预训练图像生成模型进行视频合成系统化的多阶段训练策略&#xff0c;利用流匹配技术提升效率经济高效的人类反馈强化学习框架&#x…...