当前位置: 首页 > news >正文

Python代码运行速度提升技巧!Python远比你想象中的快~

文章目录

  • 前言
  • 一、使用内置函数
  • 二、字符串连接 VS join()
  • 三、创建列表和字典的方式
  • 四、使用 f-Strings
  • 五、使用Comprehensions
  • 六、附录- Python中的内置函数
  • 总结
      • 关于Python技术储备
        • 一、Python所有方向的学习路线
        • 二、Python基础学习视频
        • 三、精品Python学习书籍
        • 四、Python工具包+项目源码合集
        • ①Python工具包
        • ②Python实战案例
        • ③Python小游戏源码
        • 五、面试资料
        • 六、Python兼职渠道


前言

其实,Python 比我们想象的运行的要快。我们之所以有先入为主的认为Python运行慢,可能是我们平常的误用和缺乏使用技巧知识。

接下来让我们看看如何用一些简单的Trick来提高我们程序的运行性能
在这里插入图片描述


一、使用内置函数

Python中的许多内置函数都是用C实现的,并且经过了很好的优化。因此,如果熟悉这些内置函数,就可以提高Python代码的性能。一些常用的内置函数有sum()len()map()max()等。

假设我们有一个包含单词的列表,我们希望每个单词的首字母均变为大写。此时使用map()函数是不错的选择。

一般版本:

new_list = []
word_list = ["i", "am", "a", "python", "programmer"]
for word in word_list:new_list.append(word.capitalize())

改进版本:

word_list = ["i", "am", "a", "python", "programmer"]
new_list = list(map(str.capitalize, word_list))

时间对比:

import time
new_list = []
word_list = ["i", "am", "a", "python", "programmer"]start = time.time()for word in word_list:new_list.append(word.capitalize())
print(time.time() - start, "seconds")start = time.time()new_list = list(map(str.capitalize, word_list))
print(time.time() - start, "seconds")

运行结果:

1.0013580322265625e-05 seconds
4.76837158203125e-06 seconds

可以看出第二种方法运行速度快了将近2倍。

二、字符串连接 VS join()

在Python中,字符串是不可变的,因此我们不能修改它们。
每次当我们连接多个字符串时,我们将会创建一个新的字符串,此时会导致一些运行性能问题。

一般版本:

new_list = []
word_list = ["I", "am", "a", "Python", "programmer"]
for word in word_list:new_list += word

改进版本:

word_list = ["I", "am", "a", "Python", "programmer"]
new_list = "".join(word_list)

时间对比:

import timenew_list = []
word_list = ["I", "am", "a", "Python", "programmer"]start = time.time()
for word in word_list:new_list += word
print(time.time() - start, "seconds")start = time.time()
new_list = "".join(word_list)
print(time.time() - start, "seconds")

运行结果:

4.0531158447265625e-06 seconds
9.5367431640625e-07 seconds

使用Join()函数可以让代码运行快4倍。

三、创建列表和字典的方式

一般来说,使用[]{}来创建列表和字典相比使用list()dict{}运行更加高效。这是因为使用list()dict{}来创建对象时需要调用一个附加函数。

一般版本:

list()
dict()

改进版本:

()
{}

时间对比:
为了便于对比时间,这里我们使用timeit函数来统计,我们运行1百万次,来看二者的时间对比,代码如下:

import timeitslower_list = timeit.timeit("list()", number=10**6)
slower_dict = timeit.timeit("dict()", number=10**6)faster_list = timeit.timeit("[]", number=10**6)
faster_dict = timeit.timeit("{}", number=10**6)print(slower_list, "seconds")
print(slower_dict, "seconds")
print(faster_list, "seconds")
print(faster_dict, "seconds")

运行结果:

0.08825178800000001 seconds
0.083323732 seconds
0.019935448999999994 seconds
0.027835573000000002 seconds

可以看出,我们的运行速度快了将近4倍。

四、使用 f-Strings

我们已经知道将字符串进行串联可能会使程序变慢。
另一个比较好的解决方案是使用f-Strings
一般版本:

me = "Python"
string = "Make " + me + " faster"

改进版本:

me = "Python"
string = f"Make {me} faster"

时间对比:

import time
me = "Python"start = time.time()
string = "Make " + me + " faster"
print(time.time() - start, "seconds")start = time.time()
string = f"Make {me} faster"
print(time.time() - start, "seconds")

运行结果:

2.1457672119140625e-06 seconds
9.5367431640625e-07 seconds

可以看出,我们的运行速度快了将近2倍。

五、使用Comprehensions

Python中的List Comprehensions为我们提供了更短的语法,甚至只有一行代码来实现各种强大的功能。很多用到循环的场景下,我们尽量使用生成式的语法来实现。

一般版本:

new_list = []
existing_list = range(1000000)
for i in existing_list:if i % 2 == 1:new_list.append(i)

较快版本:

existing_list = range(1000000)
new_list = [i for i in existing_list if i % 2 == 1]

时间对比:

import timenew_list = []
existing_list = range(1000000)start = time.time()
for i in existing_list:if i % 2 == 1:new_list.append(i)
print(time.time() - start, "seconds")start = time.time()
new_list = [i for i in existing_list if i % 2 == 1]
print(time.time() - start, "seconds")

运行结果:

0.16418218612670898 seconds
0.07834219932556152 seconds

可以看出,我们的运行速度快了将近2倍。

六、附录- Python中的内置函数

我们可以通过官网来查看Python的内置函数。
在这里插入图片描述


总结

如果我们只关注上述例子中一些短小的代码片段,这些技巧似乎没有太大的改善。 实际上,我们的项目很容易变得复杂,此时上述技巧就派上用场啦!


关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉CSDN大礼包:《Python入门资料&实战源码&安装工具】免费领取安全链接,放心点击

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python基础学习视频

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述
因篇幅有限,仅展示部分资料

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述

四、Python工具包+项目源码合集
①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

六、Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述
在这里插入图片描述
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

相关文章:

Python代码运行速度提升技巧!Python远比你想象中的快~

文章目录 前言一、使用内置函数二、字符串连接 VS join()三、创建列表和字典的方式四、使用 f-Strings五、使用Comprehensions六、附录- Python中的内置函数总结关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、精品Python学习书籍四、Python工具包项…...

P6入门:项目初始化11-项目详情之计算Calculations

前言 使用项目详细信息查看和编辑有关所选项目的详细信息,在项目创建完成后,初始化项目是一项非常重要的工作,涉及需要设置的内容包括项目名,ID,责任人,日历,预算,资金,分类码等等&…...

<MySQL> 查询数据进阶操作 -- 联合查询

目录 一、什么是笛卡尔积? 二、什么是联合查询? 三、内连接 3.1 简介 3.2 语法 3.3 更多的表 3.4 操作演示 四、外连接 4.1 简介 4.2 语法 4.3 操作演示 五、自连接 5.1 简介 5.2 自连接非必要不使用 六、子查询(嵌套查询) 6.1 简介 6.…...

centos 6.10 安装 svn1.14.2

安装 apr 和 apr-util 下载地址 我下载的分别是 apr-1.7.4 和 apr-unit-1.6.3 常规的安装步骤 ./configure --prefix/usr/local/xxx make && make install注意要先安装 apr 再安装 apr-unit-1.6.3 安装 lz4 下载地址 要配置好环境变量,不然可能还是找…...

Java实现俄罗斯方块

规则 1.方块会从上方缓慢下落,玩家可以通过键盘上的上下左右键来控制方块。 2.方块移到区域最下方或是着地到其他方块上无法移动时,就会固定在该处,而新的方块出现在区域上方开始落下。 3.当区域中某一列横向格子全部由方块填满,…...

【计算思维】少儿编程蓝桥杯青少组计算思维题考试真题及解析B

STEMA考试-计算思维-U8级(样题) 1.浩浩的左⼿边是( )。 A.兰兰 B.⻉⻉ C.⻘⻘ D.浩浩 2.2时30分,钟⾯上时针和分针形成的⻆是什么⻆?( ) A.钝⻆ B.锐⻆ C.直⻆ D.平⻆ 3.下⾯是⼀年级同学最喜欢的《⻄游记》…...

第三章 栈和队列【24王道数据结构笔记】

1.栈 1.1 栈的基本概念 只允许在一端(栈顶top)进行插入或删除操作的受限的线性表。后进先出(Last In First Out)LIFO。或者说先进后出FILO。 进栈顺序:a1 > a2 > a3 > a4 > a5出栈顺序:a5 > a4 > a3 > a2 …...

保姆级教程之SABO-VMD-CNN-SVM的分类诊断,特征可视化

今天出一期基于SABO-VMD-CNN-SVM的分类诊断。 依旧是采用经典的西储大学轴承数据。基本流程如下: 首先是以最小包络熵为适应度函数,采用SABO优化VMD的两个参数。其次对每种状态的数据进行特征向量的求取,并为每组数据打上标签。然后将数据送入…...

跳跃游戏(贪心思想)

题解 给你一个非负整数数组 nums ,你最初位于数组的 第一个下标 。数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标,如果可以,返回 true ;否则,返回 false 。 输入样例 示例 1…...

【JavaSE语法】类和对象(二)

六、 封装 6.1 封装的概念 面向对象程序三大特性:封装、继承、多态。而类和对象阶段,主要研究的就是封装特性。 封装:将数据和操作数据的方法进行有机结合,隐藏对象的属性和实现细节,仅对外公开接口来和对象进行交互…...

【SA8295P 源码分析 (三)】121 - MAX9295A 加串器芯片手册分析 及初始化参数分析

【SA8295P 源码分析】121 - MAX9295A 加串器芯片手册分析 及初始化参数分析 一、MAX9295A 芯片特性1.1 GPIO 引脚说明1.2 功能模块框图1.3 时序分析1.3.1 GMSL2 Lock Time:25 ms1.3.2 视频初始化延时:1.1ms + 17000 x t(PCLK)1.3.3 High-Speed Data Transmission in Bursts1.…...

Maya 2024 for Mac(3D建模软件)

Maya 2024是一款三维计算机图形软件,具有强大的建模、动画、渲染、特效等功能,广泛应用于影视、游戏、广告等行业。以下是Maya 2024软件的主要功能介绍: 建模:Maya 2024具有强大的建模工具,包括多边形建模、曲面建模、…...

9. 深度学习——GAN

机器学习面试题汇总与解析——GAN 本章讲解知识点 从 GAN 讲起本专栏适合于Python已经入门的学生或人士,有一定的编程基础。本专栏适合于算法工程师、机器学习、图像处理求职的学生或人士。本专栏针对面试题答案进行了优化,尽量做到好记、言简意赅。这才是一份面试题总结的正…...

BeanUtils中的copyProperties方法使用

一、Beanutils中的copyProperties是我们在日常开发中常用的一个方法。 作用: 将a实体类中的属性赋值到b实体类中相对于的字段上 1.我们前端传参的时候我们后端通常会用vo实体类来接收,但是更新数据库的时候需要用do去操作 2.我们将vo的属性copy到do中可…...

hivesql连续日期统计最大逾期/未逾期案例

1、虚表(测试表和数据) create test_table as select a.cust_no, a.r_date, a.yqts from ( select 123 as cust_no, 20231101 as r_date, 0 as yqts union all select 123 as cust_no, 20231102 as r_date, 1 as yqts union all select 123 as cust_no, 20231103 as r_d…...

基于STM32的无线通信系统设计与实现

【引言】 随着物联网的迅速发展,无线通信技术逐渐成为现代通信领域的关键技术之一。STM32作为一款广受欢迎的微控制器,具有丰富的外设资源和强大的计算能力,在无线通信系统设计中具有广泛的应用。本文将介绍如何基于STM32实现一个简单的无线通…...

kubernetes--pod详解

目录 一、pod简介: 1. Pod基础概念: 2. Kubrenetes集群中Pod的两种使用方式: 3. pod资源中包含的容器: 4. pause容器的两个核心功能: 5. Kubernetes中使用pause容器概念的用意: 二、pod的分类&#xff1…...

WPF提供了哪些不同类型的画刷

在WPF中,画刷(Brush)用于填充图形对象(如形状、控件的背景和前景)的颜色和样式。WPF提供了几种不同类型的画刷: SolidColorBrush:这是最简单的画刷,它提供了一个单一的、固定的颜色。…...

STM32与ZigBee技术在智能家居无线通信中的应用研究

一、引言 智能家居系统是利用物联网技术将家庭各种设备进行互联互通,实现智能化控制和管理的系统。在智能家居系统中,无线通信技术起着至关重要的作用,而STM32微控制器和ZigBee技术则是实现智能家居无线通信的关键技术。本文将对STM32与ZigB…...

【Apache Doris】审计日志插件 | 快速体验

【Apache Doris】审计日志插件 | 快速体验 一、 环境信息1.1 硬件信息1.2 软件信息 二、 审计日志插件介绍三、 快速 体验3.1 AuditLoader 配置3.1.1 下载 Audit Loader 插件3.1.2 解压安装包3.1.3 修改 plugin.conf 3.2 创建库表3.3 初始化3.4 验证 一、 环境信息 1.1 硬件信…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

Java 加密常用的各种算法及其选择

在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)

骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...

MySQL:分区的基本使用

目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...

嵌入式常见 CPU 架构

架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

aardio 自动识别验证码输入

技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”,于是尝试整合图像识别与网页自动化技术,完成了这套模拟登录流程。核心思路是:截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...

python打卡第47天

昨天代码中注意力热图的部分顺移至今天 知识点回顾: 热力图 作业:对比不同卷积层热图可视化的结果 def visualize_attention_map(model, test_loader, device, class_names, num_samples3):"""可视化模型的注意力热力图,展示模…...

LTR-381RGB-01RGB+环境光检测应用场景及客户类型主要有哪些?

RGB环境光检测 功能,在应用场景及客户类型: 1. 可应用的儿童玩具类型 (1) 智能互动玩具 功能:通过检测环境光或物体颜色触发互动(如颜色识别积木、光感音乐盒)。 客户参考: LEGO(乐高&#x…...