当前位置: 首页 > news >正文

2018年五一杯数学建模C题江苏省本科教育质量综合评价解题全过程文档及程序

2019年五一杯数学建模

C题 江苏省本科教育质量综合评价

原题再现

  随着中国的改革开放,国家的综合实力不断增强,中国高等教育发展整体已进入世界中上水平。作为一个教育大省,江苏省的本科教育发展在全国名列前茅,而江苏省13个地级市的本科教育质量发展并不平衡。
  1. 影响本科教育质量的指标有很多。查找资料,对如下9个指标(本科院校数量、招生人数、师资队伍与结构、生师比、教学条件与利用、专业建设与教学改革、学生就业、科研投入与产出、双一流学科建设)进行量化处理(完成下表),并进行相关的数据分析。
  2. 根据问题1中的指标数据,建立数学模型,对江苏省13个地级市(常州、淮安、连云港、南京、南通、宿迁、苏州、泰州、无锡、徐州、盐城、扬州、镇江)的本科教育质量进行综合评价。
  3. 通过建立数学模型,分析在所给的9个指标中,可以减少哪些指标使得评价结果与问题2中的评价结果基本一致。
  4. 通过建立数学模型,确定一个关键的指标,使得该指标值的普遍改善能够尽可能缩小江苏省13个地级市本科教育发展的差异,并利用查找的数据资料验证所建立模型的有效性。
  5. 请结合前面的讨论给出有效提升江苏省本科教育质量的政策建议。
在这里插入图片描述

整体求解过程概述(摘要)

  本文运用熵权法、主成分分析法、虚拟控制调节法、灰色关联分析等方法,建立了江苏省 13 个地级市本科教育质量的综合评价模型,并对该模型中的指标进一步优化与筛选,对江苏省的本科教育质量问题进行了研究。
  问题一中,本文基于给定的九个指标,参考现存的多种评价体系与原则,综合考虑分析后完成一套完备的四级指标评价体系,并基于熵权法构建评估本科教育质量的综合评价模型,对给定的九个指标进行了合理的量化。
  问题二中,本文综合考虑指标的客观与主观因素,利用熵权法和主成分分析法互为验证,得到更有效的综合评价模型。基于问题一各三级指标的量化值,进行无量纲化处理。根据处理后的无量纲值,先利用主成分分析,确定各成分的信息贡献率和累积贡献率,利用其信息贡献率得到江苏省 13 个城市本科质量的综合评价模型。本文再利用熵权法,对模型中各指标的权重进行求解赋值,并建立最终的江苏省 13 个地级市本科教育质量的综合评价模型。对于两种不同的模型,本文分别计算得到 13 个城市的本科质量综合得分,得到基于这两个模型的江苏省 13 个地级市的本科教育质量排名。对比分析两种模型得到的排名,最后得到的结果为:南京>苏州>无锡>南通>镇江>徐州>扬州>盐城>淮安>常州>连云港市>泰州>宿迁。
  问题三中,引入虚拟控制城市,通过控制 13 个城市三级指标数据进行相同幅度的调节,计算调节前后 13 个城市的本科教育质量综合评分间的相对欧式距离。本文利用灰色关联分析,验证这一方法的可靠,得到各三级指标与本科教育质量的关联度。本科院校数量、招生人数这两项指标的相对欧氏距离与关联度均较小,说明这两项指标对本科教育质量的影响较小。减少这两项指标后再带入建立的综合评价模型的排名变化浮动较小,因此可以减少本科院校数量、招生人数这两项三级指标。
  问题四中,利用敏感度分析,选择其余 7 个指标为主要三级指标,每次仅改变一个指标,与其他未改变的组成一个新指标集,重新计算其综合得分,得到敏感度。将敏感度最大的专业建设与改革作为关键指标,比较仅改变该值与未改变该值的江苏省 13 个地级市本科教育质量的得分,发现各市评分差距均明显降低,且得分越低的城市的增长量明显越高,该指标确实可以缩小江苏省 13 个地级市本科教育发展的差异。
  问题五中,根据前四问的综合评价模型分析出江苏省各地级市本科教育质量不均衡的原因,并针对现实情况,结合当下政策,提出了合理有效的建议。

模型假设:

  1.假设网上搜集的数据真实可靠,不存在异常数据。
  2.假设各高校自然发展,没有特殊情况导致其综合实力剧变。
  3. 假设不考虑民办与中外合办本科院校时,不影响教育综合质量的评价。
  4. 假设对某些指标采取的调整措施不会影响其他指标。

问题分析:

  江苏省位于长江三角洲经济发达地区,综合实力强劲,高等教育资源优渥,但仍然存在着教育发展不平衡的现象,省内十三个地级市的高等教育资源分配差异较为显著。对江苏省本科教育质量进行综合评估,可以体现出江苏省高等教育所存在的缺陷与问题,利于教育改革的推进和各高校的健康发展。因此,进行江苏省本科教育质量综合评估具有十分重要的意义。
  关于问题一的分析
  问题一要求对给出的九个指标进行量化处理,并进行相关的数据分析。由于江苏省本科教育质量受多种复杂因素作用的影响, 且在选取评价指标时需要考虑到指标的可行性、 指标选取的主观性等因素的影响, 因此可以基于熵权法进行客观赋权,建立一个多层次的江苏省本科教育质量评价指标体系。
  关于问题二的分析
  问题二要求对问题一中的指标数据,建立数学模型,对江苏省 13 个地级市的本科教育质量进行综合评价。考虑到指标针对这十三个地级市的可行性, 将收集到的数据标准化后用熵权法计算各指标权重, 最后代入第一问的评价体系即可求出综合评分进行排名。
  关于问题三的分析
  问题三要求在所给的九个指标中,可以减少那些指标使评价结果与问题二中的评价结果基本一致。可以考虑根据分析各项指标的灵敏性来判断指标对目标层影响的大小。为了能更直观地调控各指标的变量, 且使各变量值对该指标的影响是等效的, 本文考虑插入一个虚拟控制变量。 通过调节改虚拟控制变量的各指标数据,计算各指标的灵敏度,从而确定出各指标变化对目标层的影响效果。
  关于问题四的分析
  问题四要求确定一个关键的指标,使得该指标值得普遍该晒能够尽可能缩小江苏省 13 个地级市本科教育发展差异。可以考虑敏感度分析,任意改变主要三级指标的综合得分,对比改变前后 13 个地级市本科教学质量的得分,来判断该关键指标是否符合要求。
  关于问题五的分析
  问题五要求我们结合前面的讨论,给出有效提升江苏省本科教育质量的政策建议。考虑根据问题一至问题四中获得的所有可能结果进行多方面地分析,采取重点对策来提出了对有效提升江苏省本科教育质量的科学且有依据的政策建议。

模型的建立与求解整体论文缩略图

在这里插入图片描述

全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

程序代码:(代码和文档not free)

clc
A=[1  51/5 1];
n=2;
e0=ones(n,1);
e0=(1/n)*e0;
for i=1:ne0=A*e0;e=e0/sum(e0);e1=zeros(n,1);e1=e;if e0==e1breakend
end
e1
clc     
n=5;
x=zeros(n,n);
Aa=zeros(n,n);
ans0=0;
A=[   1    2    7    5    51/2    1    4    3    31/7  1/4    1   1/2  1/31/5  1/3    2    1    1  1/5  1/3    3    1    1];
w=sum(A);
for i=1:25if (i<=5)Aa(i)=A(i)/w(1);else if (i<=10)Aa(i)=A(i)/w(2);else if (i<=15)Aa(i)=A(i)/w(3);else if (i<=20)Aa(i)=A(i)/w(4);else Aa(i)=A(i)/w(5);endendB=sum(Aa');k=sum(B);for i=1:nB(i)=(B(i))/kendw=B'aw=A*w;for i=1:nans0=ans0+(1/n)*(aw(i)/w(i));endans0CI=(ans0-n)/(n-1)CR=CI/1.12 
clc
A=[1 1/3 1/33  1    53  1/5  1];
n=3;
e0=ones(n,1);
e0=(1/n)*e0;
for i=1:ne0=A*e0;e=e0/sum(e0)e1=zeros(n,1);e1=e;if e0==e1breakend
end
e1
clc,clear
x=[3 39152 8341 16.6 100 550653	0 0.92882 21410 0 18.7 50 339561 0 0.90792 11545 0 18.16 70 91484 0 0.890535 329483 0 20.4 55 1429259 38 0.91343 31641 7327	19.21 75 992409 0 0.92121 47960 2 21.8 35 359100	0 0.87247 67413 018.7 90 1193750 1 0.92425 19226 0 18.9 40 1350277 0 0.90232 34462 0 18.5 80 429389	2 0.92436 53992 12098 17.1 95 964210	2 0.8762 18334 4399 15.8 65 557704 0 0.91673 22405 0 15.8 85 790380 0 0.92622 25760 10162 15.4 60 1077366 0 0.8642
];
x=zscore(x);  %数据标准化
std=CORRCOEF(x);   %计算相关系数矩阵
[vec,val]=eig(std);   %求特征值(val)及特征向量(vec)
newval=diag(val);   %将特征值做成一个新向量
[y,i]=sort(newval);    %对特征值进行排序,y为排序结果,i为索引
rate=y/sum(y)    %计算贡献率
sumrate=0;
newi=[];
for k=length(y);-1;1sumrate=sumrate+rate(k);newi(length(y)+1-k)=i(k);if sumrate>0.85 break;end
end       %记下累积贡献率大于85%的特征值的序号方人员newi中
fprintf('主成分数;%g\n\n',length(newi));  
for i=1;1;1;length(newi)  %计算荷载aafor j=1;1;1length(y)aa(i,j)=sqrt(newval(newi(i)))*vec(j,newi(i));end
end
aaa=aa.*aa;   %主成分荷载归一化zcfhz
for i=1;1;length(newi)for j=1;1;length(y)zcfhz(i,j)=aa(i,j)/sqrt(sun(aaa(i,;)));end
end
fprintf('主成分荷载;/n'),zcfhz    %输出主成分荷载zcfhz
全部论文请见下方“ 只会建模 QQ名片” 点击QQ名片即可

相关文章:

2018年五一杯数学建模C题江苏省本科教育质量综合评价解题全过程文档及程序

2019年五一杯数学建模 C题 江苏省本科教育质量综合评价 原题再现 随着中国的改革开放&#xff0c;国家的综合实力不断增强&#xff0c;中国高等教育发展整体已进入世界中上水平。作为一个教育大省&#xff0c;江苏省的本科教育发展在全国名列前茅&#xff0c;而江苏省13个地级…...

第四代智能井盖传感器:万宾科技助力城市安全

在繁华喧嚣的城市里人来人往&#xff0c;井盖作为基础设施的一个组成部分在路面上分布范围广。然而这些看似普通的井盖却存在着位移、水浸的风险&#xff0c;可能给我们的生活带来诸多不便&#xff0c;更会威胁到我们的人身安全。如何有效监测和管理井盖的状态&#xff0c;成为…...

[Jenkins] Docker 安装Jenkins及迁移流程

系统要求 最低推荐配置: 256MB可用内存1GB可用磁盘空间(作为一个Docker容器运行jenkins的话推荐10GB) 为小团队推荐的硬件配置: 1GB可用内存50 GB 可用磁盘空间 软件配置: Java 8—无论是Java运行时环境&#xff08;JRE&#xff09;还是Java开发工具包&#xff08;JDK&#xff…...

第七篇 基于JSP 技术的网上购书系统——新品上架、推荐产品、在线留言、搜索功能实现(网上商城、仿淘宝、当当、亚马逊)

目录 1.新品上架 1.1功能说明 1.2界面设计 1.3处理流程 1.4数据来源和算法 1.4.1数据来源 1.4.2查询条件 1.4.3表间关系 1.4.4相关sql实例 2.推荐产品 2.1功能说明 2.2界面设计 2.3处理流程 2.4数据来源和算法 2.4.1数据来源 2.4.2查询条件 2.4.3表间关…...

IntelliJ IDE 插件开发 |(一)快速入门

前言 IntelliJ IDEA 作为 Java 开发的首选 IDE&#xff0c;其强大、方便之处不必多说。不过&#xff0c;由于个人或者团队的个性化需求&#xff0c;我们或多或少会想对其功能进行拓展&#xff0c;这时就需要开发插件&#xff08;在 IntelliJ 平台下的所有 IDE 均可运行&#x…...

【Ubuntu】Windows远程Ubuntu系统

步骤 开启ssh服务并开放22端口关闭防火墙ufw或iptables &#xff1b;或者将远程端口添加到入站与出站规则安装xrdp并将xrdp用户添加到ssl-cert用户组mstsc 远程&#xff0c;输入账号密码 1、开启ssh服务 1.1. 查看ssh是否已经开启 sudo ps -e | grep ssh如果最后返回是sshd…...

pipeline jenkins流水线

Pipeline 是 Jenkins 中一种灵活且强大的工作流机制&#xff0c;它允许您以代码的形式来定义和管理持续集成和持续交付的流程。 Pipeline 的作用主要体现在以下几个方面&#xff1a; 可编排的构建流程&#xff1a;使用 Pipeline&#xff0c;您可以将一个或多个阶段&#xff08…...

软件工程理论与实践 (吕云翔) 第六章 面向对象分析课后习题及其解析

第六章 面向对象分析 知识点: 一个典型的软件系统通常包括的内容为&#xff1a;它使用数据结构&#xff08;对象模型&#xff09;&#xff0c;执行操作&#xff08;动态模型&#xff09;&#xff0c;并且完成数据值的变化&#xff08;功能模型&#xff09;。 3种模型之间的关…...

langchain(1):使用LangChain 调用 openai 的 text/chat model

文章目录 重要参考OPENAI API调用 Text 模型调用 Chat 模型消息角色 Chat 模型 vs Text 模型 通过 LangChain 调用 Text 和 Chat 模型调用 text 模型调用 chat 模型 重要参考 langchain 中文网 langchain api openai api 文档 huggingface LangChain 是一个全方位的、基于大…...

rabbitMQ的扇出模式(fanout发布订阅)的生产者与消费者使用案例

扇出模式 fanout 发布订阅模式 生产者 生产者发送消息到交换机&#xff08;logs&#xff09;,控制台输入消息作为生产者的消息发送 package com.esint.rabbitmq.work03;import com.esint.rabbitmq.RabbitMQUtils; import com.rabbitmq.client.Channel;import java.util.Scanne…...

VSCode打开Json 文件格式化

在VSCode中打开JSON文件时&#xff0c;你可以使用以下步骤来格式化JSON并显示为多行&#xff1a; 使用快捷键&#xff1a; 在打开的JSON文件中&#xff0c;使用快捷键格式化文档。 Windows/Linux&#xff1a;Shift Alt FmacOS&#xff1a;Shift Option F 右键菜单&#xff…...

【C++】:STL——标准模板库介绍 || string类

&#x1f4da;1.什么是STL STL(standard template libaray-标准模板库)&#xff1a;是C标准库的重要组成部分&#xff0c;不仅是一个可复用的组件库&#xff0c;而且 是一个包罗数据结构与算法的软件框架 &#x1f4da;2.STL的版本 原始版本 Alexander Stepanov、Meng Lee 在…...

Python小白之PyCharm仍然显示“No module named ‘xlwings‘”

Python小白之“没有名称为xlwings‘的模块”-CSDN博客文章浏览阅读8次。cmd 打开命令行&#xff0c;输入python出现>>>的提示格&#xff0c;输入import xlwings 回车&#xff0c;正常报错&#xff1a;No module named xlwings。输入python 回车后&#xff0c;再输入im…...

在Uni-app中实现计时器效果

本文将介绍如何在Uni-app中使用Vue.js的计时器功能实现一个简单的计时器效果。 首先&#xff0c;我们需要创建一个包含计时器的组件。以下是一个基本的计时器组件示例&#xff1a; <template><div class"timer"><p>{{ formatTime }}</p><…...

Linux脚本shell中将Windos格式字符转换为unix

众所周知&#xff0c;windos的文档直接复制到linux服务器上去&#xff0c;是需要进行格式转换的&#xff0c;否则可能出现以下报错&#xff1a; 解决方法&#xff1a; vim 脚本 输入 :set ff ##会显示字符格式 :set ffunix ##转换为unix格式 :wq ##保存退出...

【分布式】MIT 6.824 Lab 2B实现细节分析

基于6.824 2020版 http://nil.csail.mit.edu/6.824/2020/schedule.html Lab 2A&#xff08;选举&#xff09;一天就完成了&#xff0c;主要是第一次开始写Raft需要稍微熟悉一下&#xff0c;但是几乎不用修改&#xff0c;很容易就通过了。不过到了Lab 2B就会发现2A能够通过纯属侥…...

MySql 数据库初始化,创建用户,创建数据库,授权

登录MySQL&#xff08;使用管理员账户&#xff09; mysql -u root -p 设置用户 -- 创建用户并设置密码 CREATE USER user_name% IDENTIFIED BY user_password;-- 删除用户 drop user user_name; 设置数据库 -- 创建数据库 CREATE DATABASE database_name;-- 删除数据库 DR…...

【洛谷算法题】P5712-Apples【入门2分支结构】

&#x1f468;‍&#x1f4bb;博客主页&#xff1a;花无缺 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P5712-Apples【入门2分支结构】&#x1f30f;题目描述&#x1f30f;输入格式&…...

vue项目中的js文件使用vuex

使用场景&#xff1a;假设有一个接口&#xff0c;需要在很多页面获取一遍并且将接口的返回值保存起来&#xff0c;这样就能使用vuex&#xff0c;将值保存在vuex中 实现&#xff1a;vuex中新建firmModule.js文件&#xff0c;编写存储值的代码&#xff0c;utils/getFirmData.js用…...

【Vue3】 computed 完整写法 全选反选 、计算商品总价

全选反选 const allCheck computed({get() {return buyCard.value.every(item > item.checkState)},set(val) {return buyCard.value.forEach(item > item.checkState val);},}); 计算商品总价格 const aggregatePrice computed(() > {const arr buyCard.value.f…...

eNSP-Cloud(实现本地电脑与eNSP内设备之间通信)

说明&#xff1a; 想象一下&#xff0c;你正在用eNSP搭建一个虚拟的网络世界&#xff0c;里面有虚拟的路由器、交换机、电脑&#xff08;PC&#xff09;等等。这些设备都在你的电脑里面“运行”&#xff0c;它们之间可以互相通信&#xff0c;就像一个封闭的小王国。 但是&#…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容

目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法&#xff0c;当前调用一个医疗行业的AI识别算法后返回…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

【JavaSE】多线程基础学习笔记

多线程基础 -线程相关概念 程序&#xff08;Program&#xff09; 是为完成特定任务、用某种语言编写的一组指令的集合简单的说:就是我们写的代码 进程 进程是指运行中的程序&#xff0c;比如我们使用QQ&#xff0c;就启动了一个进程&#xff0c;操作系统就会为该进程分配内存…...