当前位置: 首页 > news >正文

【献给过去的自己】栈实现计算器(C语言)

背景

        记得在刚学C语言时,写了一篇栈实现计算器-CSDN博客文章。偶然间看到了文章的阅读量以及评论,居然有1.7w的展现和多条博友的点评,反馈。

        现在回过头来看,的确有许多不严谨的地方,毕竟当时分享文章时,还未毕业。理论和思维还不够严谨。但是我还依稀记得,班级上当时写出这个程序的同学,稀疏可数。所以在当时,还是有骄傲的资本的。本着对技术精益求精的态度,再通过本篇文章希望能够帮助刚接触C语言的朋友,也是给过去的自己一个满意的答复~

规则

        对于一个表达式,我们应该如何去识别它呢?当时,老师和我们说,按照如下规则进行解析即可。

        当时我们并不懂这个规则的由来,只知道按照这个规则去编程即可。再后来的工作中,因为考《软件设计师》资格证,了解到上述的规则,其实就是后缀表达式。同理还有前缀表达式中缀表达式

中缀表达式

        中缀表达式就是我们常用的一种算数表示方式。它的特点是操作符以中缀的方式处于操作数中间。但是中缀表达比较适合人类计算,对于计算机而言过于复杂。前缀表达式和后缀表达式对于计算机而言,更加友好。

        因此,我们想用程序实现计算器功能,有两种方式:

中缀表达式--> 前缀表达式-->计算

中缀表达式--> 后缀表达式-->计算

前缀表达式

        前缀表达式的运算符位于两个操作数之前,又称为前缀记法或波兰式。比如表达式(中缀)5+4,前缀表达式+ 5 4。因此使用前缀表达式进行计算,需要两个步骤。

  1. 如何将中缀表达式转换为前缀表达式

  2. 计算机如何识别前缀表达式并计算

中缀表达式转换前缀表达式

        根据文中描述,中缀表达式转换为前缀表达式的规则如下:

  1. 初始化两个栈:运算符栈S1和存储中间结果的栈S2;

  2. 从右至左扫描中缀表达式;

  3. 遇到操作数时,将其压入S2;

  4. 遇到运算符时,比较其与S1栈顶运算符的优先级;

    1. 如果S1为空,或栈顶运算符为右括号),则将此运算符入栈;

    2. 否则,若优先级比栈顶运算符的较高或相等,也将运算符压入S1;

    3. 否则,将S1栈顶的运算符弹出并压入到S2,再次转到4.1与S1中新的栈顶运算符相比较;

  5. 遇到括号时:

    1. 如果是右括号),则直接压入S1;

    2. 如果是左括号(,则依次弹出S1栈顶的运算符,并压入S2,直到遇到右括号为止,此时将这一对括号丢弃;

  6. 重复步骤25,直到表达式的最左边;

  7. 将S1中剩余的运算符依次弹出并压入S2;

  8. 依次弹出S2中的元素并输出,结果即为中缀表达式对应的前缀表达式。

        虽然规则很复杂,但是编码难度并不是很大,大家可以按照自己的技术能力尝试一下。

分析思路

        我们以表达式1+(2+3)*4-5举例。

        1. 因为输入表达式是字符串,后续我们需要从右往左扫描表达式,因此首先需要将字符串表达式中的运算符和操作数进行区分,可以用整型数组如下图:

        2. 根据25规则,进行分析。

       

        3. 弹出S2中的数据元素:- + 1 * + 2 3 4 5;

代码示例

我的代码示例如下:

#include<stdlib.h>
#include<stdio.h>
#include<string.h>
#include<stdint.h>
#include<stdbool.h>#define STACK_LEN 1024/** 中缀表达式栈*/
static int32_t g_infix_expression[1024] = {0};/** 前缀表达式栈*/
static int32_t g_prefix_expression[1024] = {0};/** 后缀表达式栈*/
static int32_t g_suffix_expression[1024] = {0};/*** @brief 将输入的字符串表达式转换为中缀表达式** @param [in] expression 字符串表达式* @return int 0 成功 non-0 失败* */
int expression2infix(const char* expression)
{if(expression == NULL){printf("input error\n");return -1;}int dataTmp = 0; //表达式中的操作数bool dataFlag = false; // 操作数标识,表示当前是否有数据需要入栈const char* ptr = expression;int32_t* infix_index = g_infix_expression;printf("expression = %s\n",expression);while(*ptr != '\0'){/** 字符为数字*/if('0' <= *ptr  && *ptr <= '9'){dataTmp = dataTmp*10 +(*ptr - '0');dataFlag = true;}/**字符为操作符或括号*/else if(*ptr == '+' || *ptr == '-' || *ptr == '*' || *ptr == '/' || *ptr == '(' || *ptr == ')'){if(dataFlag == true){*(infix_index++) = dataTmp;dataFlag = false;dataTmp = 0;}*(infix_index++) = *ptr;}else{printf("wrong exptrssion\n");return -1;}ptr++;}/**将最后一个操作数,入栈*/if(dataFlag == true){*(infix_index++) = dataTmp;dataFlag = false;dataTmp = 0;}return 0;
}/*** @brief 将中缀表达式转换为前缀表达式** @return int 0 成功 non-0 失败* */
int infix2prefixExpression()
{/**初始化运算符栈和中间结果栈*/int32_t stack_s1[STACK_LEN] = {0};int32_t stack_s1_top = 0;int32_t stack_s2[STACK_LEN] = {0};int32_t stack_s2_top = 0; int32_t * index = g_infix_expression;/**获取中缀表达式最右侧操作数*/while(*(index+1) != 0){index++;}while(index != g_infix_expression){/** 操作符*/if(*index == '+' || *index == '-' || *index == '*' || *index == '/'){while(true){/**S1为空,或栈顶运算符为右括号),则将此运算符入栈*/if(stack_s1_top == 0 || stack_s1[stack_s1_top-1] == ')' || stack_s1[stack_s1_top-1] == '-'|| stack_s1[stack_s1_top-1] == '+'){stack_s1[stack_s1_top++] = *index;break;}stack_s2[stack_s2_top++] = stack_s1[stack_s1_top-1];stack_s1[stack_s1_top-1] = 0;stack_s1_top = stack_s1_top -1;}}/**左括号* 则依次弹出S1栈顶的运算符,并压入S2,直到遇到右括号为止*/else if(*index == '('){while(true){/**异常*/if(stack_s1_top == 0){printf("infix experssion worong\n");return -1;}/**遇到右括号,丢弃括号*/if(stack_s1[stack_s1_top-1] == ')'){stack_s1[stack_s1_top-1] = 0;stack_s1_top = stack_s1_top -1;break;}/**其它符号需要入栈S2*/else{stack_s2[stack_s2_top++] = stack_s1[stack_s1_top-1];stack_s1[stack_s1_top-1] = 0;stack_s1_top--;}}}/**右括号* 直接入运算符栈s1*/else if(*index == ')'){stack_s1[stack_s1_top++] = *index;}/** 操作数* 直接加入栈s2*/else{stack_s2[stack_s2_top++] = *index;}index--;
#if 0printf("==============\n");printf("stack_s1=");for(int i = 0 ; i < stack_s1_top; i++){(stack_s1[i] > 9) ? (printf("%c ",stack_s1[i])):(printf("%d ",stack_s1[i]));}printf("\n");printf("stack_s2=");for(int i = 0 ; i < stack_s2_top; i++){(stack_s2[i] > 9) ? (printf("%c ",stack_s2[i])):(printf("%d ",stack_s2[i]));}printf("\n");
#endif  }/**将最左侧操作数压入s2*/stack_s2[stack_s2_top++] = *index;/**将s1中的符号压入s2*/for(int i = stack_s1_top - 1; i >= 0; i-- ){stack_s2[stack_s2_top++] = stack_s1[i];stack_s1[i] = 0;    }/**将s2中的数据弹出,放入前缀表达式栈中*/for(int i = 0 ; stack_s2_top > 0; i++,stack_s2_top--){g_prefix_expression[i] = stack_s2[stack_s2_top-1];}return 0;
}int main(int argc,char* argv[])
{if(argc != 2){printf("please input experssion\n");return -1;}int32_t iRet = 0;iRet = expression2infix(argv[1]);if(iRet == 0){for(int i = 0 ; i < STACK_LEN && g_infix_expression[i] != 0; i++){if(g_infix_expression[i] == '+' || g_infix_expression[i] == '-' || g_infix_expression[i] == '*' || g_infix_expression[i] == '/'){printf("%c ",g_infix_expression[i]);}else{printf("%d ",g_infix_expression[i]);}}printf("\n");}iRet = infix2prefixExpression();if(iRet == 0){for(int i = 0 ; i < STACK_LEN && g_prefix_expression[i] != 0; i++){if(g_infix_expression[i] == '+' || g_infix_expression[i] == '-' || g_infix_expression[i] == '*' || g_infix_expression[i] == '/'){printf("%c ",g_infix_expression[i]);}else{printf("%d ",g_infix_expression[i]);}}printf("\n");}prefixExpressionCaculate();return 0;
}

前缀表达式计算

前缀表达式的计算规则如下:

  1. 从右至左扫描表达式;

  2. 遇到数字,压入栈中;

  3. 遇到运算符,弹出栈顶的两个数,并用运算符对这两个数做相应的计算,并将结果入栈;

  4. 重复上述2,3步骤,直到表达式最左端,最后的值为表达式的结果。

分析思路

        以上述后缀表达式举例:- + 1 * + 2 3 4 5

        得出结果为16。

代码示例

新增prefixExpressionCaculate接口。代码如下:

/*** @brief 将前缀表达式进行计算** @return int 0 成功 non-0 失败* */
int prefixExpressionCaculate()
{/**结果栈*/int32_t stack[1024] = {0};int32_t stack_len = 0;/**临时结果*/int32_t tmpResult = 0;int32_t data1 = 0;int32_t data2 = 0;/**获取后缀表达式的最右侧操作数*/int32_t* index = g_prefix_expression;while(*(index+1) != 0){index++;}while(index >= g_prefix_expression){/**弹出栈顶的两个数,并用运算符对这两个数做相应的计算,并将结果入栈*/if(*index == '+' || *index == '-' || *index == '*' || *index == '/'){data1 = stack[stack_len-1];data2 = stack[stack_len-2];if(*index == '+'){tmpResult = data1 + data2;}else if(*index == '-'){tmpResult = data1 - data2;}else if(*index == '*'){tmpResult = data1 * data2;}else if(*index == '/'){tmpResult = data1 / data2;}else{printf("worng prefixExperssion\n");return -1;}stack[stack_len-1] = 0;stack[stack_len-2] = tmpResult;stack_len --;}/**遇到数字,压栈*/else{stack[stack_len] = *index;stack_len ++;}index --;}printf("result = %d\n",stack[0]);return 0;
}

演示

后缀表达式

        后缀表达式与前缀表达式类似,只是运算符位于两个相应操作数之后,后缀表达式也称为后缀记法或逆波兰式。同样,我们需要解决两个问题。

  1. 如何将中缀表达式转换为后缀表达式

  2. 后缀表达式的计算规则

中缀表达式转后缀表达式

根据文中描述,中缀表达式转换为后缀表达式的规则如下:

  1. 初始化两个栈:运算符栈S1和存储中间结果的栈S2;

  2. 从左至右扫描中缀表达式

  3. 遇到操作数时,将其压入S2;

  4. 遇到运算符时,比较其与S1栈顶运算符的优先级;

    1. 如果S1为空,或栈顶运算符为左括号(,则将此运算符入栈;

    2. 否则,若优先级比栈顶运算符的高,也将运算符压入S1;(注意是必须为高,相同或低于都不行)

    3. 否则,将S1栈顶的运算符弹出并压入到S2,再次转到4.2与S1中新的栈顶运算符相比较;

  5. 遇到括号时:

    1. 如果是左括号(,则直接压入S1;

    2. 如果是右括号),则依次弹出S1栈顶的运算符,并压入S2,直到遇到左括号为止,此时将这一对括号丢弃;

  6. 重复步骤25,直到表达式的最右边;

  7. 将S1中剩余的运算符依次弹出并压入S2;

  8. 依次弹出S2中的元素并输出,结果即为中缀表达式对应的后缀表达式。

后缀表达式计算规则

后缀表达式的计算规则如下:

  1. 从左至右扫描表达式;

  2. 遇到数字,压入栈中;

  3. 遇到运算符,弹出栈顶的两个数,并用运算符对这两个数做相应的计算,并将结果入栈;

  4. 重复上述2,3步骤,直到表达式最右端,最后的值为表达式的结果。

        后缀表达式的代码示例可以参考前缀表达式的分析思路和代码,大家可以尝试编写。

总结

        时间流逝,在竞争激烈的社会背景下,我们的身处IT行业,不断逼迫自己去学习,去成长。但是总会觉得自己做的还不够。为什么总是赶不上别人的脚步,陷入怀疑自我的处境。

        朋友们,偶尔回头看看来时路上的自己,你会发现,你一直在成长,你的努力一直是正向反馈着你,不要轻视自己的努力。感谢csdn给予记录成长的平台,也感谢一直努力的自己。共勉~

参考文档

前缀表达式、中缀表达式和后缀表达式 - 乘月归 - 博客园

数据结构和算法(六):前缀、中缀、后缀表达式

栈实现计算器-CSDN博客

相关文章:

【献给过去的自己】栈实现计算器(C语言)

背景 记得在刚学C语言时&#xff0c;写了一篇栈实现计算器-CSDN博客文章。偶然间看到了文章的阅读量以及评论&#xff0c;居然有1.7w的展现和多条博友的点评&#xff0c;反馈。 现在回过头来看&#xff0c;的确有许多不严谨的地方&#xff0c;毕竟当时分享文章时&#xff0c;还…...

如何利用ChatGPT撰写学术论文?

在阅读全文前请注意&#xff0c;本文是利用ChatGPT“辅助完成”而不是“帮写”学术论文&#xff0c;请一定要注意学术规范&#xff01; 本文我将介绍如何使用清晰准确的“指令”让ChatGPT帮助我们在论文写作上提高效率&#xff0c;希望通过本文的指导&#xff0c;读者能够充分…...

【PG】PostgreSQL高可用方案repmgr管理之配置文件

1 配置文件 1.1 配置文件格式 repmgr.conf是一个纯文本文件&#xff0c;每行包含一个参数/值组合。 空格是无关紧要的&#xff08;除了在带引号的参数值内&#xff09;&#xff0c;并且空行将被忽略。#将该行的其余部分指定为注释。不是简单标识符或数字的参数值应该用单引号…...

labelme自动标注工具

可以实现多图中相同目标的追踪&#xff0c;自动标注目标位置&#xff0c;速度极快&#xff0c;有需要评论...

【C++学习手札】模拟实现vector

&#x1f3ac;慕斯主页&#xff1a;修仙—别有洞天 ♈️今日夜电波&#xff1a;くちなしの言葉—みゆな 0:37━━━━━━️&#x1f49f;──────── 5:28 &#x1f504; ◀️ ⏸ ▶️ ☰…...

Python将图片按照表格形式排列

图片按照表格的形式排列&#xff0c;可以使用图像处理库Pillow来实现 事例代码 from PIL import Image, ImageDraw# 创建一个画布&#xff0c;用来存放排列后的图片 canvas Image.new(RGB, (800, 600), white)# 读取图片 im1 Image.open(image1.jpg) im2 Image.open(image…...

Linux 简要命令记录

1、设置时区&#xff1a; #设为上海&#xff1a; timedatectl set-timezone Asia/Shanghai #搜索特定时区 timedatectl list-timezone2、修改时间&#xff1a; #设定系统时间 date -s "2023-11-16 22:30:00" #同步写入BIOS hwclock -w3、fdisk分区 rootheihei:~# …...

深度学习与深度强化学习

1. 深度学习中卷积层的作用是什么&#xff1f;全连接层的作用是什么&#xff1f;二者有什么联系和区别&#xff1f; 在深度学习中&#xff0c;卷积层&#xff08;Convolutional Layer&#xff09;和全连接层&#xff08;Fully Connected Layer&#xff09;是神经网络中常见的两…...

C++函数重载中形参是引用类型和常量引用类型的调用方法

void fun(int &a) {cout<<"调用func(int &a)<<endl; }void fun(const int &a) {cout<<"调用func(const int &a)<<endl; }int main() {// 1.调用引用类型的函数int a10;func(a);// 2.调用常量引用类型的函数&#xff0c;因为…...

Quest 3期间Sui上游戏处理了数百万笔交易

Sui固有的可扩展性和低且可预测的gas费使其成为Web3游戏的理想平台。在Quest 3中&#xff0c;参与的游戏项目处理了数百万笔交易&#xff0c;这毫无疑问地展示了Sui卓越的能力。 Quest 3的主题是游戏&#xff0c;让开发者有机会向潜在玩家介绍他们激动人心的创作。鼓励这些玩家…...

Python中如何定义类、基类、函数和变量?

在Python中&#xff0c;定义类、基类、函数和变量是非常常见的操作。以下是简单的示例&#xff1a; 定义类&#xff1a; class Animal:def __init__(self, name):self.name namedef make_sound(self):passclass Dog(Animal):def make_sound(self):return "Woof!"上…...

打开文件 和 文件系统的文件产生关联

补充1&#xff1a;硬件级别磁盘和内存之间数据交互的基本单位 OS的内存管理 内存的本质是对数据临时存/取&#xff0c;把内存看成很大的缓冲区 物理内存和磁盘交互的单位是4KB&#xff0c;磁盘中未被打开的文件数据块也是4KB&#xff0c;所以磁盘中页帧也是4KB&#xff0c;内存…...

【Rust】快速教程——模块mod与跨文件

前言 道尊&#xff1a;没有办法&#xff0c;你的法力已经消失&#xff0c;我的法力所剩无几&#xff0c;除非咱们重新修行&#xff0c;在这个世界里取得更多法力之后&#xff0c;或许有办法下降。——《拔魔》 \;\\\;\\\; 目录 前言跨文件mod多文件mod 跨文件mod //my_mod.rs…...

crontab定时任务是否执行

centos查看 crontab 是否启动 systemctl status crond.service 查看cron服务的启动状态 systemctl start crond.service 启动cron服务[命令没有提示] systemctl stop crond.service 停止cron服务[命令没有提示] systemctl restart crond.service 重启cron服务[命令没有提示] s…...

MATLAB程序设计:牛顿迭代法

function xnewton(x0,e,N,fx) %输入x0,误差限e,迭代次数N和函数Fx k1; while k<Nif subs(diff(fx),x0)0disp("输出奇异标志");break;endx1x0-subs(fx,x0)/subs(diff(fx),x0);if abs(x1-x0)<ebreak;endx0x1;kk1; end if k<Ndisp(x1); elsedisp("迭代失败…...

B031-网络编程 Socket Http TomCat

目录 计算机网络网络编程相关术语IP地址ip的概念InerAdress的了解与测试 端口URLTCP、UDP和7层架构TCPUDPTCP与UDP的区别和联系TCP的3次握手七层架构 Socket编程服务端代码客户端代码 http协议概念Http报文 Tomcat模拟 计算机网络 见文档 网络编程相关术语 见文档 IP地址 …...

gRPC之metadata

1、metadata 服务间使用 Http 相互调用时&#xff0c;经常会设置一些业务自定义 header 如时间戳、trace信息等&#xff0c;gRPC使用 HTTP/2 协议自然也是支持的&#xff0c;gRPC 通过 google.golang.org/grpc/metadata 包内的 MD 类型提供相关的功能接口。 1.1 类型定义 /…...

【OpenCV实现图像:OpenCV进行OCR字符分割】

文章目录 概要基本概念读入图像图像二值化小结 概要 在处理OCR&#xff08;Optical Character Recognition&#xff0c;光学字符识别&#xff09;时&#xff0c;利用传统的图像处理方法进行字符切分仍然是一种有效的途径。即便当前计算机视觉领域主导的是卷积神经网络&#xf…...

景联文科技入选量子位智库《中国AIGC数据标注产业全景报告》数据标注行业代表机构

量子位智库《中国AIGC数据标注产业全景报告》中指出&#xff0c;数据标注处于重新洗牌时期&#xff0c;更高质量、专业化的数据标注成为刚需。未来五年&#xff0c;国内AI基础数据服务将达到百亿规模&#xff0c;年复合增长率在27%左右。 基于数据基础设施建设、大模型/AI技术理…...

ClickHouse SQL操作

基本上来说传统关系型数据库&#xff08;以MySQL为例&#xff09;的SQL语句&#xff0c;ClickHouse基本都支持&#xff0c;这里不会从头讲解SQL语法只介绍ClickHouse与标准SQL&#xff08;MySQL&#xff09;不一致的地方。 1 Insert 基本与标准SQL&#xff08;MySQL&#xff09…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

《Playwright:微软的自动化测试工具详解》

Playwright 简介:声明内容来自网络&#xff0c;将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具&#xff0c;支持 Chrome、Firefox、Safari 等主流浏览器&#xff0c;提供多语言 API&#xff08;Python、JavaScript、Java、.NET&#xff09;。它的特点包括&a…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡&#xff08;如 HAProxy、AWS NLB、阿里 SLB&#xff09;发起上游连接时&#xff0c;将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后&#xff0c;ngx_stream_realip_module 从中提取原始信息…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...