Seaborn 回归(Regression)及矩阵(Matrix)绘图
Seaborn中的回归包括回归拟合曲线图以及回归误差图。
Matrix图主要是热度图。
1. 回归及矩阵绘图API概述
seaborn中“回归”绘图函数共3个:
lmplot(回归统计绘图):figure级regplot函数,绘图同regplot完全相同。(lm指linear model)
+ regplot:axes级函数。绘制线性回归拟合。
+ residplot:axes级函数。绘制线性回归的误差图。(不能用lmplot绘制resid图)
seaborn中矩阵绘图函数共有2个:
- heatmap:axes级函数。热度图,绘制一个颜色块矩阵。
- clustermap:figure级函数。聚合热度图,绘制一个分层聚合的热度图。
figure级函数与axes级函数区别见Seaborn系列(一):绘图基础、函数分类、长短数据类型支持
2. 回归统计绘图
2.1 lmplot、regplot绘图
sns.lmplot(x=None,y=None,data=None):绘制线性回归拟合图,返回FacetGridsns.regplot(x=None,y=None,data=None)绘制线性回归拟合图,返回Axes- hue:分系列用不同的颜色绘制
- col,row:指定参数不同值绘制到不同的行或列。
- ci=95:置信区间的大小,取值0-100
- order:指定拟合多项式阶数
- scatter:是否绘制散点图
- x_jitter,y_jitter:为x变量或y变量添加随机噪点。会导致绘制的散点移动,不会改变原始数据。
- x_estimator:参数值为函数,如np.mean。对每个x值的所有y值用函数计算,绘制得到的点,并绘制误差线。
- x_bins:当x不是离散值时x_estimator可以配合x_bins指定计算点和误差线数量
- robust:对异常值降低权重
- logistic:logistic=True时,假设y取值只有2个比如True和False,并用statsmodels中的逻辑回归模型回归。
sns.lmplot(data=tips, x="total_bill", y="tip")

hue、col、row参数与其他函数用法相同
sns.lmplot(data=tips, x="total_bill", y="tip", hue="sex", col="smoker")

图中拟合直线旁边透明颜色带是回归估计的置信区间,默认置信区间为95%。ci参数可以设置置信区间,ci取None则不绘制置信区间。
sns.lmplot(data=tips, x="total_bill", y="tip", ci=50)

sns.lmplot(data=tips, x="total_bill", y="tip", order=3)

sns.lmplot(data=tips, x="total_bill", y="tip", scatter=False)

x_jitter会随机改变图中散点的x坐标,y_jitter会随机改变图中散点的y坐标。
sns.lmplot(data=tips, x="total_bill", y="tip", y_jitter=10)

sns.lmplot(data=tips, x="total_bill", y="tip", x_estimator=np.mean, x_bins=4)

``
robust参数为True时,会降低异常值的权重,在需要剔除异常值时,非常有用。
但是使用robust后,计算量会比较大,通常建议取ci=None加速。
注意robust参数需要安装statsmodels模块。
<span style="color:#333333"><span style="background-color:#f9f5e9"><code>import matplotlib.pyplot as plt
import seaborn as sns
ans = sns.load_dataset("anscombe")
dat = ans.loc[ans.dataset == "III"]sns.lmplot(data=dat, x="x", y="y", robust=True, ci=None)plt.show()
</code></span></span> 
2.2 residplot绘图
sns.residplot(x=None,y=None,data=None)绘制线性回归拟合图的残差- order:回归拟合阶数
- robust:对异常值降低权重
- dropna:忽略空值
<span style="color:#333333"><span style="background-color:#f9f5e9"><code>sns.residplot(data=tips, x="total_bill", y="tip")
</code></span></span> 
3. 矩阵图
3.1 heatmap热力图
sns.residplot(data):绘制热力图- annot:在单元格内显示数据。
- fmt:设置annot参数数据显示格式。
- cbar:是否显示颜色条。
- cmap:设置colormap。
- square:单元格是否方形。
- linewidths:设置单元格线条宽度。
- linecolor:设置单元格线条颜色。
<span style="color:#333333"><span style="background-color:#f9f5e9"><code>import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
data = np.random.rand(10, 10)sns.heatmap(data=data)plt.show()
</code></span></span> 
<span style="color:#333333"><span style="background-color:#f9f5e9"><code>sns.heatmap(data=data, annot=True, fmt=".2f")
</code></span></span> 
<span style="color:#333333"><span style="background-color:#f9f5e9"><code>sns.heatmap(data=data, cmap="hsv", cbar=False, linewidths=0.5, linecolor="w")
</code></span></span> 
3.2 clustermap分层聚合热力图
<span style="color:#333333"><span style="background-color:#f9f5e9"><code>import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
data = np.random.rand(10, 10)sns.clustermap(data=data)plt.show()
</code></span></span> 
clustermap说明详见Python可视化matplotlib&seborn15-聚类热图clustermap(建议收藏) - 知乎
相关文章:
Seaborn 回归(Regression)及矩阵(Matrix)绘图
Seaborn中的回归包括回归拟合曲线图以及回归误差图。Matrix图主要是热度图。 1. 回归及矩阵绘图API概述 seaborn中“回归”绘图函数共3个: lmplot(回归统计绘图):figure级regplot函数,绘图同regplot完全相同。(lm指lin…...
nginx学习(1)
一、下载安装NGINX: 先安装gcc-c编译器 yum install gcc-c yum install -y openssl openssl-devel(1)下载pcre-8.3.7.tar.gz 直接访问:http://downloads.sourceforge.net/project/pcre/pcre/8.37/pcre-8.37.tar.gz,就…...
CLEARTEXT communication to XX not permitted by network security policy 报错
在进行网络请求时,日志中打印 CLEARTEXT communication to XX not permitted by network security policy 原因: Android P系统网络访问安全策略升级,限制了非加密的流量请求 Android P系统限制了明文流量的网络请求,之下的版本…...
91.移动零(力扣)
问题描述 代码解决以及思想 class Solution { public:void moveZeroes(vector<int>& nums) {int left 0; // 左指针,用于指向当前非零元素应该放置的位置int right 0; // 右指针,用于遍历数组int len nums.size(); // 数组长度while …...
PatchMatchNet笔记
PatchMatchNet笔记 1 概述2 PatchmatchNet网络结构图2.1 多尺度特征提取2.2 基于学习的补丁匹配 3 性能评价 PatchmatchNet: Learned Multi-View Patchmatch Stereo:基于学习的多视角补丁匹配立体算法 1 概述 特点 高速,低内存,可以处理…...
实时人眼追踪、内置3D引擎,联想ThinkVision裸眼3D显示器创新四大应用场景
11月17日,在以“因思而变 智领未来”为主题的Think Centre和ThinkVision 20周年纪念活动上,联想正式发布了业内首款2D/3D 可切换裸眼3D显示器——联想ThinkVision 27 3D。该产品首次将裸眼2D、3D可切换技术应用在显示器领域,并拓展了3D技术多…...
SELinux零知识学习十四、SELinux策略语言之客体类别和许可(8)
接前一篇文章:SELinux零知识学习十三、SELinux策略语言之客体类别和许可(7) 一、SELinux策略语言之客体类别和许可 4. 客体类别许可实例 (2)文件客体类别许可 文件客体类别有三类许可:直接映像到标准Lin…...
Unity——URP相机详解
2021版本URP项目下的相机,一般新建一个相机有如下组件 1:Render Type(渲染类型) 有Base和Overlay两种选项,默认是Base选项 Base:主相机使用该种渲染方式,负责渲染场景中的主要图形元素 Overlay(叠加):使用了Oveylay的…...
CRUD-SQL
文章目录 前置insertSelective和upsertSelective使用姿势手写sql,有两种方式 一、增当导入的数据不存在时则进行添加,有则更新 1.1 唯一键,先查,后插1.2 批量插1.2.1 批次一200、批次二200、批次三200,有一条数据写入失…...
【C语言 | 数组】C语言数组详解(经典,超详细)
😁博客主页😁:🚀https://blog.csdn.net/wkd_007🚀 🤑博客内容🤑:🍭嵌入式开发、Linux、C语言、C、数据结构、音视频🍭 🤣本文内容🤣&a…...
第三十三节——组合式API生命周期
一、基本使用 组合式api生命周期几乎和选项式一致。注意组合式api是从挂载阶段开始 <template><div></div> </template> <script setup> import {onBeforeMount, onMounted,onBeforeUpdate, onUpdated, onBeforeUnmount, onUnmounted, } from …...
【Linux】Alibaba Cloud Linux 3 安装 PHP8.1
一、系统安装 请参考 【Linux】Alibaba Cloud Linux 3 中第二硬盘、MySQL8.、MySQL7.、Redis、Nginx、Java 系统安装 二、安装源 rpm -ivh --nodeps https://rpms.remirepo.net/enterprise/remi-release-8.rpm sed -i s/PLATFORM_ID"platform:al8"/PLATFORM_ID&q…...
【容器化】Kubernetes(k8s)
文章目录 概述Docker 的管理痛点什么是 K8s云架构 & 云原生 架构核心组件K8s 的服务注册与发现组件调用流程部署单机版部署主从版本Operator来源拓展阅读 概述 Docker 虽好用,但面对强大的集群,成千上万的容器,突然感觉不香了。 这时候就…...
stm32 HSUSB
/ stm32f407xx.h #define USB_OTG_HS_PERIPH_BASE 0x40040000UL #define USB_OTG_HS ((USB_OTG_GlobalTypeDef *) USB_OTG_HS_PERIPH_BASE) // // 定义全局变量 USBD_HandleTypeDef hUsbDeviceHS;并默认全零初始化/* USB Device handle structure */ typedef struct _USB…...
C# String.Trim 方法
String.Trim()方法定义: 命名空间:System 程序集:System.Runtime.dll 返回结果:返回一个新字符串,它相当于从当前字符串中删除了一组指定字符的所有前导匹配项和尾随匹配项。 Trim方法有三个重载的方法,…...
<Linux>(极简关键、省时省力)《Linux操作系统原理分析之Linux 进程管理 4》(8)
《Linux操作系统原理分析之Linux 进程管理 4》(8) 4 Linux 进程管理4.4 Linux 进程的创建和撤销4.4.1 Linux 进程的族亲关系4.4.2 Linux 进程的创建4.4.3 Linux 进程创建的过程4.4.4 Linux 进程的执行4.4.5 Linux 进程的终止和撤销 4 Linux 进程管理 4.…...
RT-Thread STM32F407 PWM
为了展示PWM效果,这里用ADC来采集PWM输出通道的电平变化 第一步,进入RT-Thread Settings配置PWM驱动 第二步,进入board.h,打开PWM宏 第三步,进入STM32CubeMX,配置时钟及PWM 第四步,回到R…...
idea中把spring boot项目打成jar包
打jar包 打开项目,右击项目选中Open Module Settings进入project Structure 选中Artifacts,点击中间的加号(Project Settings->Artifacts->JAR->From modules with dependencies ) 弹出Create JAR from Modules&#…...
levelDB之基础数据结构-Slice
Slice是levelDB中用于操作字符串的数据结构,以字节为单位。 定义与实现 namespace leveldb {class LEVELDB_EXPORT Slice {public:// Create an empty slice.Slice() : data_(""), size_(0) {}// Create a slice that refers to d[0,n-1].Slice(const c…...
上位机模块之通用重写相机类
在常用的视觉上位机中,我们通常会使用单个上位机匹配多个相机或者多品牌相机,所以在此记录一个可重写的通用相机类,用于后续长期维护开发。 先上代码。 using HalconDotNet; using System.Collections.Generic;namespace WeldingInspection.M…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...
STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
微信小程序 - 手机震动
一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注:文档 https://developers.weixin.qq…...
ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
Spring Security 认证流程——补充
一、认证流程概述 Spring Security 的认证流程基于 过滤器链(Filter Chain),核心组件包括 UsernamePasswordAuthenticationFilter、AuthenticationManager、UserDetailsService 等。整个流程可分为以下步骤: 用户提交登录请求拦…...
spring Security对RBAC及其ABAC的支持使用
RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型,它将权限分配给角色,再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...
实战设计模式之模板方法模式
概述 模板方法模式定义了一个操作中的算法骨架,并将某些步骤延迟到子类中实现。模板方法使得子类可以在不改变算法结构的前提下,重新定义算法中的某些步骤。简单来说,就是在一个方法中定义了要执行的步骤顺序或算法框架,但允许子类…...
