当前位置: 首页 > news >正文

处理BOP数据集,将其和COCO数据集结合

处理BOP数据集,将其和COCO数据集结合

BOP

取消映射关系,并自增80
取消文件名的images前缀

import os
import json
from tqdm import tqdm
import argparseparser = argparse.ArgumentParser()
parser.add_argument('--json_path', default='H:/Dataset/COCO/train_pbr/000002/coco/annotations/scene_gt_coco.json', type=str,help="input: coco format(json)")
parser.add_argument('--save_path', default='H:/Dataset/COCO/train_pbr/000002/coco/labels', type=str,help="specify where to save the output dir of labels")
arg = parser.parse_args()def convert(size, box):dw = 1. / (size[0])dh = 1. / (size[1])x = box[0] + box[2] / 2.0y = box[1] + box[3] / 2.0w = box[2]h = box[3]x = x * dww = w * dwy = y * dhh = h * dhreturn (x, y, w, h)if __name__ == '__main__':json_file = arg.json_path  # COCO Object Instance 类型的标注ana_txt_save_path = arg.save_path  # 保存的路径data = json.load(open(json_file, 'r'))if not os.path.exists(ana_txt_save_path):os.makedirs(ana_txt_save_path)id_map = {}  # coco数据集的id不连续!重新映射一下再输出!for i, category in enumerate(data['categories']):id_map[category['id']] = i# 通过事先建表来降低时间复杂度max_id = 0for img in data['images']:max_id = max(max_id, img['id'])# 注意这里不能写作 [[]]*(max_id+1),否则列表内的空列表共享地址img_ann_dict = [[] for i in range(max_id + 1)]for i, ann in enumerate(data['annotations']):img_ann_dict[ann['image_id']].append(i)for img in tqdm(data['images']):filename = img["file_name"]img_width = img["width"]img_height = img["height"]img_id = img["id"]head, tail = os.path.splitext(filename)head2 = head.split("/")head3 = head2[1]ana_txt_name = head3 + ".txt"  # 对应的txt名字,与jpg一致f_txt = open(os.path.join(ana_txt_save_path, ana_txt_name), 'w')'''for ann in data['annotations']:if ann['image_id'] == img_id:box = convert((img_width, img_height), ann["bbox"])f_txt.write("%s %s %s %s %s\n" % (id_map[ann["category_id"]], box[0], box[1], box[2], box[3]))'''# 这里可以直接查表而无需重复遍历for ann_id in img_ann_dict[img_id]:ann = data['annotations'][ann_id]box = convert((img_width, img_height), ann["bbox"])#print(box[0],box[1],box[2],box[3])f_txt.write("%s %s %s %s %s\n" % (ann["category_id"]+80, box[0], box[1], box[2], box[3]))f_txt.close()

在这里插入图片描述

相关文章:

处理BOP数据集,将其和COCO数据集结合

处理BOP数据集,将其和COCO数据集结合 BOP 取消映射关系,并自增80 取消文件名的images前缀 import os import json from tqdm import tqdm import argparseparser argparse.ArgumentParser() parser.add_argument(--json_path, defaultH:/Dataset/COCO…...

跟李沐学AI-深度学习课程05线性代数

线性代数 🏷sec_linear-algebra 在介绍完如何存储和操作数据后,接下来将简要地回顾一下部分基本线性代数内容。 这些内容有助于读者了解和实现本书中介绍的大多数模型。 本节将介绍线性代数中的基本数学对象、算术和运算,并用数学符号和相应…...

电子病历编辑器源码(Springboot+原生HTML)

一、系统简介 本系统主要面向医院医生、护士,提供对住院病人的电子病历书写、保存、修改、打印等功能。本系统基于云端SaaS服务方式,通过浏览器方式访问和使用系统功能,提供电子病历在线制作、管理和使用的一体化电子病历解决方案&#xff0c…...

Qt的日志输出

在Qt中,一般习惯使用qDebug信息进行输出和打印调试信息到console或者文件中,在qDebug中,也有一些小技巧,可以帮助我们更好的使用qDebug打印日志记录,本文分享了qDebug使用的一些小技巧。 1. 打印出文件名、行号、调用函…...

基于热交换算法优化概率神经网络PNN的分类预测 - 附代码

基于热交换算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于热交换算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于热交换优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络…...

main.js 中的 render函数

按照之前的单组件文件中的写法&#xff0c;我们的写法应该是这样的 import App from ./App.vuenew Vue({el: #app,templete: <App></App>,components: {App}, }) 1、定义el根节点。2、注册App组件。3、渲染 templete 模板 但是在脚手架工程中&#xff0c;他是这…...

Pandas 将DataFrame中单元格内的列表拆分成单独的行

使用 explode 函数 import pandas as pddata {month: [1, 2],week: [[i for i in range(2)], [i for i in range(3)]]} df pd.DataFrame(data) print(df)df df.explode(week) print(df)...

PDF转化为图片

Java 类 PDF2Image 在包 com.oncloudsoft.zbznhc.common.util.pdf 中是用来将 PDF 文件转换为图像的。它使用了 Apache PDFBox 库来处理 PDF 文档并生成图像。下面是类中每个部分的详细解释&#xff1a; 类和方法说明 类 PDF2Image: 使用了 Lombok 库的 Slf4j 注解&#xff0c…...

【Java】智慧工地管理系统源码(SaaS模式)

智慧工地是聚焦工程施工现场&#xff0c;紧紧围绕人、机、料、法、环等关键要素&#xff0c;综合运用物联网、云计算、大数据、移动计算和智能设备等软硬件信息技术&#xff0c;与施工生产过程相融合。 一、什么是智慧工地 智慧工地是指利用移动互联、物联网、智能算法、地理信…...

torch.nn.functional.log_softmax 函数解析

该函数将输出向量转化为概率分布&#xff0c;作用和softmax一致。 相比softmax&#xff0c;对较小的概率分布处理能力更好。 一、定义 softmax 计算公式&#xff1a; log_softmax 计算公式&#xff1a; 可见仅仅是将 softmax 最外层套上 log 函数。 二、使用场景 log_soft…...

jQuery、vue、小程序、uni-app中的本地存储数据和接受数据是什么?

在这四个工具/框架中&#xff0c;Uni-app和微信小程序比较类似&#xff0c;因为它们都是为了实现跨平台开发而设计的。 jQuery 是一个快速、小巧且特性丰富的 JavaScript 库。它提供了各种操作和处理 HTML DOM、事件、动画&#xff0c;以及提供各种工具函数的功能。然而&#…...

黑马React18: 基础Part 1

黑马React: 基础1 Date: November 15, 2023 Sum: React介绍、JSX、事件绑定、组件、useState、B站评论 React介绍 概念: React由Meta公司研发&#xff0c;是一个用于 构建Web和原生交互界面的库 优势: 1-组件化的开发方式 2-优秀的性能 3-丰富的生态 4-跨平台开发 开发环境搭…...

windows Oracle Database 19c 卸载教程

目录 打开任务管理器 停止数据库服务 Universal Installer 卸载Oracle数据库程序 使用Oracle Installer卸载 删除注册表项 重新启动系统 打开任务管理器 ctrlShiftEsc可以快速打开任务管理器&#xff0c;找到oracle所有服务然后停止。 停止数据库服务 在开始卸载之前&a…...

动态规划解决leetcode上的两道回文问题(针对思路)

本期主讲的是使用动态规划去解决两道回文问题&#xff0c;分别是 647. 回文子串 - 力扣&#xff08;LeetCode&#xff09; 516. 最长回文子序列 - 力扣&#xff08;LeetCode&#xff09; 而不是leetcode5.最长回文子串&#xff0c;虽然这道题也是回文问题&#xff0c;也可以…...

使用人工智能自动测试 Flutter 应用程序

移动应用程序开发的增长速度比以往任何时候都快。几乎每个企业都需要移动应用程序来保持市场竞争力。由于像 React Native 这样的跨平台移动应用程序开发框架允许公司使用单一源代码和单一编程语言构建 iOS 和 Android 应用程序&#xff0c; Flutter是 Google 支持的另一个热门…...

四、程序员指南:数据平面开发套件

REORDER LIBRARY 重排序库提供了根据其序列号对mbuf进行重排序的机制。 16.1 操作 重排序库本质上是一个对mbuf进行重新排序的缓冲区。用户将乱序的mbuf插入重排序缓冲区&#xff0c;并从中提取顺序正确的mbuf。 在任何给定时刻&#xff0c;重排序缓冲区包含其序列号位于序列…...

Go 之 captcha 生成图像验证码

目前 chptcha 好像只可以生成纯数字的图像验证码&#xff0c;不过对于普通简单应用来说也足够了。captcha默认将store封装到内部&#xff0c;未提供对外操作的接口&#xff0c;因此使用自己显式生成的store&#xff0c;可以通过store自定义要生成的验证码。 package mainimpor…...

【Java从入门到大牛】多线程

&#x1f525; 本文由 程序喵正在路上 原创&#xff0c;CSDN首发&#xff01; &#x1f496; 系列专栏&#xff1a;Java从入门到大牛 &#x1f320; 首发时间&#xff1a;2023年11月18日 &#x1f98b; 欢迎关注&#x1f5b1;点赞&#x1f44d;收藏&#x1f31f;留言&#x1f4…...

UE5 C++报错:is not currently enabled for Live Coding

解决办法&#xff1a; 再次打开项目&#xff0c;以此法打开&#xff1a;...

mysql服务器数据同步

在Linux和Windows之间实现MySQL服务器数据的同步。下面是一些常见的方法和工具&#xff1a; 复制&#xff08;Replication&#xff09;&#xff1a;MySQL复制是一种常见的数据同步技术&#xff0c;可用于将一个MySQL服务器的数据复制到其他服务器。您可以设置主服务器&#xff…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

Unity3D中Gfx.WaitForPresent优化方案

前言 在Unity中&#xff0c;Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染&#xff08;即CPU被阻塞&#xff09;&#xff0c;这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案&#xff1a; 对惹&#xff0c;这里有一个游戏开发交流小组&…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路

进入2025年以来&#xff0c;尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断&#xff0c;但全球市场热度依然高涨&#xff0c;入局者持续增加。 以国内市场为例&#xff0c;天眼查专业版数据显示&#xff0c;截至5月底&#xff0c;我国现存在业、存续状态的机器人相关企…...

CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云

目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

.Net Framework 4/C# 关键字(非常用,持续更新...)

一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...