当前位置: 首页 > news >正文

linux kprobe使用

使用场景

  • 监控某个内核函数是否被调用
  • 获取某个内核函数耗费的时间
  • 获取某个内核函数的入参
  • 获取某个内核函数的调用栈(dump_stack()
  • 获取某个内核函数的返回值

参数传递规则

x86平台对pt_regs的定义
arch/x86/include/asm/ptrace.h

// i386架构
#ifdef __i386__struct pt_regs {/** NB: 32-bit x86 CPUs are inconsistent as what happens in the* following cases (where %seg represents a segment register):** - pushl %seg: some do a 16-bit write and leave the high*   bits alone* - movl %seg, [mem]: some do a 16-bit write despite the movl* - IDT entry: some (e.g. 486) will leave the high bits of CS*   and (if applicable) SS undefined.** Fortunately, x86-32 doesn't read the high bits on POP or IRET,* so we can just treat all of the segment registers as 16-bit* values.*/unsigned long bx;unsigned long cx;unsigned long dx;unsigned long si;unsigned long di;unsigned long bp;unsigned long ax;unsigned short ds;unsigned short __dsh;unsigned short es;unsigned short __esh;unsigned short fs;unsigned short __fsh;/* On interrupt, gs and __gsh store the vector number. */unsigned short gs;unsigned short __gsh;/* On interrupt, this is the error code. */unsigned long orig_ax;unsigned long ip;unsigned short cs;unsigned short __csh;unsigned long flags;unsigned long sp;unsigned short ss; unsigned short __ssh;
};#else /* __i386__ */
// ia64
struct pt_regs {
/** C ABI says these regs are callee-preserved. They aren't saved on kernel entry* unless syscall needs a complete, fully filled "struct pt_regs".*/unsigned long r15;unsigned long r14;unsigned long r13;unsigned long r12;unsigned long bp;unsigned long bx;
/* These regs are callee-clobbered. Always saved on kernel entry. */unsigned long r11;unsigned long r10;unsigned long r9;unsigned long r8;unsigned long ax;unsigned long cx;unsigned long dx;unsigned long si;unsigned long di;
/** On syscall entry, this is syscall#. On CPU exception, this is error code.* On hw interrupt, it's IRQ number:*/unsigned long orig_ax;
/* Return frame for iretq */unsigned long ip;unsigned long cs;unsigned long flags;unsigned long sp;unsigned long ss;
/* top of stack page */
};#endif /* !__i386__ */

从4.18的内核版本bpf的相关源码/tools/testing/selftests/bpf/bpf_helpers.h中可以窥探x86结构和`arm``架构函数参数传递规则。

#if defined(bpf_target_x86)
#define PT_REGS_PARM1(x) ((x)->di)
#define PT_REGS_PARM2(x) ((x)->si)
#define PT_REGS_PARM3(x) ((x)->dx)
#define PT_REGS_PARM4(x) ((x)->cx)
#define PT_REGS_PARM5(x) ((x)->r8)
#define PT_REGS_RET(x) ((x)->sp)
#define PT_REGS_FP(x) ((x)->bp)
#define PT_REGS_RC(x) ((x)->ax)
#define PT_REGS_SP(x) ((x)->sp)
#define PT_REGS_IP(x) ((x)->ip)#elif defined(bpf_target_arm64)
#define PT_REGS_PARM1(x) ((x)->regs[0])
#define PT_REGS_PARM2(x) ((x)->regs[1])
#define PT_REGS_PARM3(x) ((x)->regs[2])
#define PT_REGS_PARM4(x) ((x)->regs[3])
#define PT_REGS_PARM5(x) ((x)->regs[4])
#define PT_REGS_RET(x) ((x)->regs[30])
#define PT_REGS_FP(x) ((x)->regs[29]) /* Works only with CONFIG_FRAME_POINTER */
#define PT_REGS_RC(x) ((x)->regs[0])
#define PT_REGS_SP(x) ((x)->sp)
#define PT_REGS_IP(x) ((x)->pc)

/samples/bpf/test_overhead_kprobe_kern.c

// 使用示例
SEC("kprobe/__set_task_comm")
int prog(struct pt_regs *ctx)
{struct signal_struct *signal;struct task_struct *tsk;char oldcomm[16] = {};char newcomm[16] = {};u16 oom_score_adj;u32 pid;tsk = (void *)PT_REGS_PARM1(ctx);pid = _(tsk->pid);bpf_probe_read(oldcomm, sizeof(oldcomm), &tsk->comm);bpf_probe_read(newcomm, sizeof(newcomm), (void *)PT_REGS_PARM2(ctx));signal = _(tsk->signal);oom_score_adj = _(signal->oom_score_adj);return 0;
}// 函数原型
/** These functions flushes out all traces of the currently running executable* so that a new one can be started*/
void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
{task_lock(tsk);trace_task_rename(tsk, buf);strlcpy(tsk->comm, buf, sizeof(tsk->comm));task_unlock(tsk);perf_event_comm(tsk, exec);
}
  • x86架构寄存器约定与函数参数传递
    在 X86_64 架构中,寄存器的约定如上,当调用一个函数的时候,RDI 寄存器用于传递第一个参数,RSI 寄存器用于传递第二个寄存器,依次类推,R9 寄存器传递第六个参数, 函数返回值保存在 RAX 寄存器中。那么如果函数的参数超过六个,那么多余的参数参数如何传递? 在 X86_64 架构中,函数大于 6 个参数的参数通过堆栈进行传输。

其中RDI对应pt_regs结构体中的di,其他寄存器依次类推。

  • ARM架构寄存器约定与函数参数传递
    在 ARM64 架构中,使用 X0-X7 寄存器传递参数,第一个参数通过 X0 寄存器传递,第二个参数通过 X1 寄存器传递,以此类推. 返回值存储在 X0 寄存器中。

使用实例

/samples/kprobes/kprobe_example.c

/** NOTE: This example is works on x86 and powerpc.* Here's a sample kernel module showing the use of kprobes to dump a* stack trace and selected registers when _do_fork() is called.** For more information on theory of operation of kprobes, see* Documentation/kprobes.txt** You will see the trace data in /var/log/messages and on the console* whenever _do_fork() is invoked to create a new process.*/#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/kprobes.h>#define MAX_SYMBOL_LEN	64
static char symbol[MAX_SYMBOL_LEN] = "_do_fork";
module_param_string(symbol, symbol, sizeof(symbol), 0644);/* For each probe you need to allocate a kprobe structure */
static struct kprobe kp = {.symbol_name	= symbol,
};/* kprobe pre_handler: called just before the probed instruction is executed */
static int handler_pre(struct kprobe *p, struct pt_regs *regs)
{
#ifdef CONFIG_X86pr_info("<%s> pre_handler: p->addr = 0x%p, ip = %lx, flags = 0x%lx\n",p->symbol_name, p->addr, regs->ip, regs->flags);
#endif
#ifdef CONFIG_PPCpr_info("<%s> pre_handler: p->addr = 0x%p, nip = 0x%lx, msr = 0x%lx\n",p->symbol_name, p->addr, regs->nip, regs->msr);
#endif
#ifdef CONFIG_MIPSpr_info("<%s> pre_handler: p->addr = 0x%p, epc = 0x%lx, status = 0x%lx\n",p->symbol_name, p->addr, regs->cp0_epc, regs->cp0_status);
#endif
#ifdef CONFIG_ARM64pr_info("<%s> pre_handler: p->addr = 0x%p, pc = 0x%lx,"" pstate = 0x%lx\n",p->symbol_name, p->addr, (long)regs->pc, (long)regs->pstate);
#endif
#ifdef CONFIG_S390pr_info("<%s> pre_handler: p->addr, 0x%p, ip = 0x%lx, flags = 0x%lx\n",p->symbol_name, p->addr, regs->psw.addr, regs->flags);
#endif/* A dump_stack() here will give a stack backtrace */return 0;
}/* kprobe post_handler: called after the probed instruction is executed */
static void handler_post(struct kprobe *p, struct pt_regs *regs,unsigned long flags)
{
#ifdef CONFIG_X86pr_info("<%s> post_handler: p->addr = 0x%p, flags = 0x%lx\n",p->symbol_name, p->addr, regs->flags);
#endif
#ifdef CONFIG_PPCpr_info("<%s> post_handler: p->addr = 0x%p, msr = 0x%lx\n",p->symbol_name, p->addr, regs->msr);
#endif
#ifdef CONFIG_MIPSpr_info("<%s> post_handler: p->addr = 0x%p, status = 0x%lx\n",p->symbol_name, p->addr, regs->cp0_status);
#endif
#ifdef CONFIG_ARM64pr_info("<%s> post_handler: p->addr = 0x%p, pstate = 0x%lx\n",p->symbol_name, p->addr, (long)regs->pstate);
#endif
#ifdef CONFIG_S390pr_info("<%s> pre_handler: p->addr, 0x%p, flags = 0x%lx\n",p->symbol_name, p->addr, regs->flags);
#endif
}/** fault_handler: this is called if an exception is generated for any* instruction within the pre- or post-handler, or when Kprobes* single-steps the probed instruction.*/
static int handler_fault(struct kprobe *p, struct pt_regs *regs, int trapnr)
{pr_info("fault_handler: p->addr = 0x%p, trap #%dn", p->addr, trapnr);/* Return 0 because we don't handle the fault. */return 0;
}static int __init kprobe_init(void)
{int ret;kp.pre_handler = handler_pre;kp.post_handler = handler_post;kp.fault_handler = handler_fault;ret = register_kprobe(&kp);if (ret < 0) {pr_err("register_kprobe failed, returned %d\n", ret);return ret;}pr_info("Planted kprobe at %p\n", kp.addr);return 0;
}static void __exit kprobe_exit(void)
{unregister_kprobe(&kp);pr_info("kprobe at %p unregistered\n", kp.addr);
}module_init(kprobe_init)
module_exit(kprobe_exit)
MODULE_LICENSE("GPL");
obj-m := kprobe.okprobe-y += kprobe_example.oBASEINCLUDE ?= /lib/modules/`uname -r`/buildall:$(MAKE) -C $(BASEINCLUDE) M=$(PWD) modules;clean:$(MAKE) -C $(BASEINCLUDE) M=$(PWD) clean;rm -f *.ko;
```

相关文章:

linux kprobe使用

使用场景 监控某个内核函数是否被调用获取某个内核函数耗费的时间获取某个内核函数的入参获取某个内核函数的调用栈&#xff08;dump_stack()&#xff09;获取某个内核函数的返回值 参数传递规则 x86平台对pt_regs的定义 arch/x86/include/asm/ptrace.h // i386架构 #ifdef…...

2023年超全前端面试题-背完稳稳拿offer(欢迎补充)

HTML、CSS相关 HTML5 HTML5新特性 增强了表单&#xff0c;input新增了一些type&#xff1a; color----定义调色板 tel-----定义包含电话号码的输入域 email—定义包含email地址的输入域 search–定义搜索域 number–定义包含数值的输入域 date----定义选取日、月、年的输入域…...

python之web自动化测试框架

梳理下搭建web自动化框架的流程&#xff1a; 创建目录&#xff1a; cases&#xff1a;存放测试用例&#xff0c;unittest框架要求用例名必须以test开头&#xff0c;所以命名test_case.py test_case.py代码如下&#xff1a;继承unittest.TestCase类下面的方法setupclass(),te…...

算法笔记(十五)—— 动态规划(暴力递归到动态规划)习题训练!

通过递归到记忆化搜索再到严格表结构的动态规划 递归方法的评价&#xff1a;1. 单可变参数的维度&#xff1b;2. 可变参数的个数 记忆化搜索 在暴力递归中会存在很多的重复计算&#xff0c;可以使用存储结构来实现空间换时间。 严格表结构的动态规划 整理位置之间的依赖关系…...

云原生架构基础概念及应用办法

什么是云原生&#xff1f; 云原生是一种基于容器、微服务和自动化运维的软件开发和部署方法。它可以使应用程序更加高效、可靠和可扩展&#xff0c;适用于各种不同的云平台。 如果要更直接通俗的来解释下上面的概念。 云原生更准确来说就是一种文化&#xff0c;是一种潮流&a…...

RedisTemplate 的基本使用手把手教

下载实例源码 使用步骤 1、引入 spring-boot-starter-data-redis 依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId> </dependency>2、在 application.yml 配置 R…...

Hbase -- Compact工具梳理

1. 背景 当前&#xff0c;线上HBase集群的自动Major Compact是关闭的&#xff0c;我们选择在凌晨业务空闲的时候进行手动触发Major Compact&#xff0c;Compact工具就是在运维平台上对资源组、RS、表进行Major Compact。目前线上有2种版本的Compact程序&#xff1a;Compact_v1…...

【java代码审计】SQL注入

1 原理 没有正确的对用户的输入进行检查&#xff0c;将用户的输入以拼接的方式带入到SQL语句中&#xff0c;导致SQL注入。 2 产生SQL注入的原因 2.1 JDBC拼接不当造成SQL注入 前置知识&#xff1a; JDBC执行SQL语句的两种方式&#xff1a; PrepareStatement&#xff1a;会对…...

前置知识-辛 Runge-Kutta 方法

1.3.3 辛 Runge-Kutta 方法 将方程 ( 1.10.2 ) (1.10 .2) (1.10.2) 改写为 d z d x =...

require 与 import 两种引入模块方式到底有什么区别?

关于JavaScript 的模块化规范&#xff0c;可以移步至&#xff1a; 【JavaScript高级】模块化规范「一文让你彻底搞懂前端模块化规范 & 区别」 下面进入正题 require 与 import 两种引入模块方式&#xff0c;到底有什么区别呢&#xff1f; 大致可以分为以下几个方面&#…...

软考信息系统监理师备考建议

用好备考方法&#xff0c;两三个月就可以过的。信息系统监理师备考最好以教材和历年真题为主&#xff0c;教学视频模拟题为辅。考试介绍与复习建议&#xff1a;考试设置的科目包括&#xff1a;&#xff08;1&#xff09;信息系统工程监理基础知识&#xff0c;考试时间150分钟&a…...

第八届蓝桥杯省赛——4承压计算(二维数组,嵌套循环)

题目&#xff1a;X星球的高科技实验室中整齐地堆放着某批珍贵金属原料。每块金属原料的外形、尺寸完全一致&#xff0c;但重量不同。金属材料被严格地堆放成金字塔形。7 5 8 7 8 8 9 2 7 2 8 1 4 9 1 8 1 8 8 4 1 7 9 6 1 4 5 4 5 6 5 5 6 9 5 6 5 5 4 7 9 3 5 5 1 7 5 7 9 7 4…...

【ECNU】3645. 莫干山奇遇(C++)

目录 题目 输入格式 输出格式 样例 提示 思路 代码 题目 单点时限: 2.0 sec 内存限制: 512 MB 出题人当然是希望出的题目有关 oxx&#xff0c;于是想方设法给题目配上一些有关 oxx 的背景故事&#xff0c;使得它看起来不那么无趣。但有的时候却无法引入合适的小姐姐&…...

为什么需要学习shell、shell的作用

课程基于B站于超课程笔记 03 Shebang的正确玩法_哔哩哔哩_bilibili P1 shell的作用 P2 shell执行命令的流程 P3 Shebang的正确玩法 什么是shell及组成 shell概念 shelll组成 Shebang概念 /bin/sh /bin/bash一样&#xff0c;都是指向一个bash解释器 [rootlocalhost ~]#…...

pgsql-Create_ALTER_GRANT_REVOKE命令语法

pgsql-Create_ALTER_GRANT_REVOKE命令语法 资料 语法约定 CREATE ROLE ALTER ROLE GRANT授权 REVOKE回收授权 权限类型说明 语法约定 下面的约定被用于命令的大纲&#xff1a;方括弧&#xff08;[和]&#xff09;表示可选的部分&#xff08;在 Tcl 命令里&#xff0c;使…...

【linux】:进程概念

文章目录 冯诺依曼体系结构一&#xff1a;操作系统二: 进程总结冯诺依曼体系结构 我们常见的计算机&#xff0c;如笔记本。我们不常见的计算机&#xff0c;如服务器&#xff0c;大部分都遵守冯诺依曼体系。 冯诺依曼体系如下图&#xff1a; 那么输入设备有哪些呢&#xff1f…...

创建对象的方式和对属性的操作

javaScript支持多种编程范式&#xff0c;包括函数式编程和面向对象编程&#xff0c;javaScript的对象被设计成一组属性的无序集合&#xff0c;由key和value组成。 创建对象的两种方式 早期使用创建对象方式最多的是使用Object类&#xff0c;使用new关键字来创建一个对象&…...

GO时间相关操作说明

文章目录 GO时间相关操作时间转换成字符串字符串转换成时间时间戳和时间操作时间比较操作时间增加和减少操作休眠操作time.AfterFunc操作time.NewTicker操作GO时间相关操作 ​ GO语言在使用时间转换的时候会用到2006-01-02 15:04:05 这是固定参数写法,类似java语言中的yyyy-M…...

选择和分支结构

选择和分支结构选择和分支结构一、复习问答二、选择结构2.1 基础选择结构2.2 if-else结构2.3 多重if结构2.4 嵌套if结构三、分支结构四、局部变量选择和分支结构 一、复习问答 1、Java中基本数据类型 2、类型的转换的两种情形 3、数据类型提升的规则 二、选择结构 2.1 基础选…...

Elasticsearch总结笔记

文章目录简介类型增删改查操作索引原理简介 底层使用的lucene引擎&#xff0c;lucene引擎直接使用相对复杂&#xff0c;有一定的学习成本&#xff0c;同样是使用Java编写&#xff0c;Elasticsearch使用的rest风格的进行交互&#xff0c;而数据呢则是以JSON的方式进行传输。学习…...

Python爬虫实战:研究MechanicalSoup库相关技术

一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...