【Python 千题 —— 基础篇】输出列表方差
题目描述
题目描述
输出列表的方差。题中有一个包含数字的列表 [10, 39, 13, 48, 32, 10, 9],使用 for 循环获得这个列表中所有项的方差。
输入描述
无输入。
输出描述
输出列表的方差。
示例
示例 ①
输出:
列表的方差是:228.0
代码讲解
下面是本题的代码:
# 描述: 输出列表的方差
# 输入: 无输入
# 输出: 输出列表的方差# 数字列表
numbers = [10, 39, 13, 48, 32, 10, 9]# 计算平均值
average = sum(numbers) / len(numbers)# 初始化方差为零
variance = 0# 使用 for 循环遍历列表
for num in numbers:# 累加每个元素与平均值的差的平方variance += (num - average) ** 2# 计算方差
variance /= len(numbers)# 输出方差
print(f"列表的方差是:{variance}")
思路讲解
下面是这个Python编程习题的思路讲解,适用于初学者:
-
数字列表:
- 创建一个包含数字的列表。
numbers = [10, 39, 13, 48, 32, 10, 9] -
计算平均值:
- 计算列表的平均值。
average = sum(numbers) / len(numbers) -
初始化方差为零:
- 使用一个变量初始化方差为零。
variance = 0 -
使用 for 循环遍历列表:
- 使用
for循环遍历列表中的每个元素。
for num in numbers: - 使用
-
累加每个元素与平均值的差的平方:
- 在循环中,累加每个元素与平均值的差的平方。
variance += (num - average) ** 2 -
计算方差:
- 循环结束后,计算方差。
variance /= len(numbers) -
输出方差:
- 输出方差。
print(f"列表的方差是:{variance}")
这样,程序会使用 for 循环遍历列表,并计算列表中所有项的方差。
相关知识点
这个Python编程习题涉及了以下主要知识点:
-
列表:
- 创建和使用包含数字的列表。
numbers = [10, 39, 13, 48, 32, 10, 9] -
计算平均值:
- 使用
sum函数和列表的长度计算平均值。
average = sum(numbers) / len(numbers) - 使用
-
for 循环:
- 使用
for循环遍历列表中的每个元素。
for num in numbers: - 使用
-
变量和累加:
- 使用一个变量初始化方差为零,然后在循环中累加每个元素与平均值的差的平方。
variance = 0 variance += (num - average) ** 2 -
计算方差:
- 使用列表的长度计算方差。
variance /= len(numbers)
这个习题适合初学者,因为它涵盖了Python编程的基础知识,包括列表、for循环、变量的使用以及数学运算。帮助学习者理解如何使用循环计算列表的方差。
| 作者信息 作者 : 繁依Fanyi CSDN: https://techfanyi.blog.csdn.net 掘金:https://juejin.cn/user/4154386571867191 |
相关文章:
【Python 千题 —— 基础篇】输出列表方差
题目描述 题目描述 输出列表的方差。题中有一个包含数字的列表 [10, 39, 13, 48, 32, 10, 9],使用 for 循环获得这个列表中所有项的方差。 输入描述 无输入。 输出描述 输出列表的方差。 示例 示例 ① 输出: 列表的方差是:228.0代码…...
【Spring总结】基于配置的方式来写Spring
本篇文章是对这两天所学的内容做一个总结,涵盖我这两天写的所有笔记: 【Spring】 Spring中的IoC(控制反转)【Spring】Spring中的DI(依赖注入)Dependence Import【Spring】bean的基础配置【Spring】bean的实…...
Unity在Windows选项下没有Auto Streaming
Unity在Windows选项下没有Auto Streaming Unity Auto Streaming插件按网上说的不太好使最终解决方案 Unity Auto Streaming插件 我用的版本是个人版免费版,版本号是:2021.2.5f1c1,我的里边Windows下看不到Auto Streaming选项,就像下边这张图…...
下厨房网站月度最佳栏目菜谱数据获取及分析
目录 概要 源数据获取 写Python代码爬取数据 Scala介绍与数据处理 1.Sacla介绍...
【Java 进阶篇】深入理解 JQuery 事件绑定:标准方式
在前端开发中,处理用户与页面的交互是至关重要的一部分。JQuery作为一个广泛应用的JavaScript库,为我们提供了简便而强大的事件绑定机制,使得我们能够更加灵活地响应用户的行为。本篇博客将深入解析 JQuery 的标准事件绑定方式,为…...
某app c++层3处魔改md5详解
hello everybody,本期是安卓逆向so层魔改md5教学,干货满满,可以细细品味,重点介绍的是so层魔改md5的处理. 常见的魔改md5有: 1:明文加密前处理 2:改初始化魔数 3:改k表中的值 4:改循环左移的次数 本期遇到的是124.且循环左移的次数是动态的,需要前面的加密结果处理生成 目录…...
安装MongoDB
查看MongoDB版本可以执行如下命令 mongod --version 如果是Ubuntu,则直接安装 sudo apt-get install -y mongodb如果是其他,比如Amazon Linux2。 查看Linux系统发行版类型 grep ^NAME /etc/*release 如果是 Amazon Linux 2,则创建一个r…...
C++加持让python程序插上翅膀——利用pybind11进行c++和python联合编程示例
目录 0、前言1、安装 pybind11库c侧python侧 2、C引入bybind11vs增加相关依赖及设置cpp中添加头文件及导出模块cpp中添加numpy相关数据结构的接收和返回编译生成dll后改成导出模块同名文件的.pyd 3、python调用c4、C引入bybind11 0、前言 在当今的计算机视觉和机器学习领域&am…...
ubuntu20.04安装cv2
查看ubuntu的版本 cat /etc/lsb-release DISTRIB_IDUbuntu DISTRIB_RELEASE20.04 DISTRIB_CODENAMEfocal DISTRIB_DESCRIPTION"Ubuntu 20.04.3 LTS"更改镜像源 cp /etc/apt/sources.list /etc/apt/sources.list.bak cat > /etc/apt/sources.listdeb http://mirr…...
Android 13.0 recovery出厂时清理中字体大小的修改
1.前言 在13.0的系统rom定制化开发中,在recovery模块也是系统中比较重要的模块,比如恢复出厂设置,recovery ota升级, 清理缓存等等,在一些1080p的设备,但是density只是240这样的设备,会在恢复出厂设置的时候,显示的字体有点小, 产品要求需要将正在清理的字体调大点,这…...
spring+pom-注意多重依赖时的兼容问题[java.lang.NoSuchMethodError]
背景: 项目中同时引入了依赖A和依赖B,而这两个依赖都依赖于项目C,但它们指定的C版本不一致,导致运行时出现了错误。 报错如: java.lang.NoSuchMethodError 解决方案: 需要在项目pom文件中引入依赖C并指定需…...
Matalab插值详解和源码
转载:Matalab插值详解和源码 - 知乎 (zhihu.com) 插值法 插值法又称“内插法”,是利用函数f (x)在某区间中已知的若干点的函数值,作出适当的特定函数,在区间的其他点上用这特定函数的值作为函数f (x)的近似值,这种方…...
Flask 接口
目录 前言 代码实现 简单接口实现 执行其它程序接口 携带参数访问接口 前言 有时候会想着开个一个接口来访问试试,这里就给出一个基础接口代码示例 代码实现 导入Flask模块,没安装Flask 模块需要进行 安装:pip install flask 使用镜…...
Vue3 toRef函数和toRefs函数
当我们在setup 中的以读取对象属性单独交出去时,我们会发现这样会丢失响应式: setup() {let person reactive({name: "张三",age: 18,job: {type: "前端",salary:10}})return {name: person.name,age: person.age,type: person.jo…...
【论文阅读】(VAE-GAN)Autoencoding beyond pixels using a learned similarity metric
论文地址;[1512.09300] Autoencoding beyond pixels using a learned similarity metric (arxiv.org) / 一、Introduction 主要讲了深度学习中生成模型存在的问题,即常用的相似度度量方式(使用元素误差度量)对于学习良好的生成模型存在一定…...
verilog之wire vs reg区别
文章目录 一、wire vs reg二、实例一、wire vs reg wire线网: 仅支持组合逻辑建模必须由assign语句赋值不能在always块中驱动用于连接子模块的输出用于定义模块的输入端口reg寄存器: 可支持组合逻辑或时序逻辑建模必须在always块中赋值二、实例 wire [7:0] cnt; assign cnt …...
力扣面试经典150题详细解析
刷题的初心 众所周知,算法题对于面试大厂是必不可缺的一环,而且对于提高逻辑思维能力有着不小的提升。所以,对于程序员来讲,无论刚入行,还是从业多年,保持一个清醒的头脑,具备一个良好的设计思…...
【Java 进阶篇】唤醒好运:JQuery 抽奖案例详解
在现代社交网络和电商平台中,抽奖活动成为吸引用户、提升用户参与度的一种常见手段。通过精心设计的抽奖页面,不仅可以增加用户的互动体验,还能在一定程度上提高品牌的知名度。本篇博客将通过详细解析 JQuery 抽奖案例,带领你走进…...
数据处理生产环境_利用MurmurHash3算法在Spark和Scala中生成随机颜色
需求 根据给定的轨迹编号在这一列后面生成随机颜色_16 输入数据 ("吃饭", "123"), ("吃饭", "宋江"), ("郭靖", "宋江"), ("杨过", "奥特曼"), ("周芷若", "张无忌"),…...
便利工具分享:一个proto文件的便利使用工具
最近在研究序列化,每次的proto文件手敲生成代码指令都很麻烦,干脆自己写一个泛用脚本,这样以后使用时候就方便了。 废话不多说,首先上代码: #!/bin/bash # 检查是否提供了文件名参数 if [ -z "$1" ]; then…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
多场景 OkHttpClient 管理器 - Android 网络通信解决方案
下面是一个完整的 Android 实现,展示如何创建和管理多个 OkHttpClient 实例,分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
图表类系列各种样式PPT模版分享
图标图表系列PPT模版,柱状图PPT模版,线状图PPT模版,折线图PPT模版,饼状图PPT模版,雷达图PPT模版,树状图PPT模版 图表类系列各种样式PPT模版分享:图表系列PPT模板https://pan.quark.cn/s/20d40aa…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
Axure 下拉框联动
实现选省、选完省之后选对应省份下的市区...
