当前位置: 首页 > news >正文

【深度学习实验】注意力机制(二):掩码Softmax 操作

文章目录

  • 一、实验介绍
  • 二、实验环境
    • 1. 配置虚拟环境
    • 2. 库版本介绍
  • 三、实验内容
    • 0. 理论介绍
      • a. 认知神经学中的注意力
      • b. 注意力机制:
    • 1. 注意力权重矩阵可视化(矩阵热图)
    • 2. 掩码Softmax 操作
      • a. 导入必要的库
      • b. masked_softmax
      • c. 实验结果

一、实验介绍

  注意力机制作为一种模拟人脑信息处理的关键工具,在深度学习领域中得到了广泛应用。本系列实验旨在通过理论分析和代码演示,深入了解注意力机制的原理、类型及其在模型中的实际应用。

本文将介绍将介绍带有掩码的 softmax 操作

二、实验环境

  本系列实验使用了PyTorch深度学习框架,相关操作如下:

1. 配置虚拟环境

conda create -n DL python=3.7 
conda activate DL
pip install torch==1.8.1+cu102 torchvision==0.9.1+cu102 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
conda install matplotlib
 conda install scikit-learn

2. 库版本介绍

软件包本实验版本目前最新版
matplotlib3.5.33.8.0
numpy1.21.61.26.0
python3.7.16
scikit-learn0.22.11.3.0
torch1.8.1+cu1022.0.1
torchaudio0.8.12.0.2
torchvision0.9.1+cu1020.15.2

三、实验内容

0. 理论介绍

a. 认知神经学中的注意力

  人脑每个时刻接收的外界输入信息非常多,包括来源于视
觉、听觉、触觉的各种各样的信息。单就视觉来说,眼睛每秒钟都会发送千万比特的信息给视觉神经系统。人脑通过注意力来解决信息超载问题,注意力分为两种主要类型:

  • 聚焦式注意力(Focus Attention):
    • 这是一种自上而下的有意识的注意力,通常与任务相关。
    • 在这种情况下,个体有目的地选择关注某些信息,而忽略其他信息。
    • 在深度学习中,注意力机制可以使模型有选择地聚焦于输入的特定部分,以便更有效地进行任务,例如机器翻译、文本摘要等。
  • 基于显著性的注意力(Saliency-Based Attention)
    • 这是一种自下而上的无意识的注意力,通常由外界刺激驱动而不需要主动干预。
    • 在这种情况下,注意力被自动吸引到与周围环境不同的刺激信息上。
    • 在深度学习中,这种注意力机制可以用于识别图像中的显著物体或文本中的重要关键词。

  在深度学习领域,注意力机制已被广泛应用,尤其是在自然语言处理任务中,如机器翻译、文本摘要、问答系统等。通过引入注意力机制,模型可以更灵活地处理不同位置的信息,提高对长序列的处理能力,并在处理输入时动态调整关注的重点。

b. 注意力机制:

  1. 注意力机制(Attention Mechanism):

    • 作为资源分配方案,注意力机制允许有限的计算资源集中处理更重要的信息,以应对信息超载的问题。
    • 在神经网络中,它可以被看作一种机制,通过选择性地聚焦于输入中的某些部分,提高了神经网络的效率。
  2. 基于显著性的注意力机制的近似: 在神经网络模型中,最大汇聚(Max Pooling)和门控(Gating)机制可以被近似地看作是自下而上的基于显著性的注意力机制,这些机制允许网络自动关注输入中与周围环境不同的信息。

  3. 聚焦式注意力的应用: 自上而下的聚焦式注意力是一种有效的信息选择方式。在任务中,只选择与任务相关的信息,而忽略不相关的部分。例如,在阅读理解任务中,只有与问题相关的文章片段被选择用于后续的处理,减轻了神经网络的计算负担。

  4. 注意力的计算过程:注意力机制的计算分为两步。首先,在所有输入信息上计算注意力分布,然后根据这个分布计算输入信息的加权平均。这个计算依赖于一个查询向量(Query Vector),通过一个打分函数来计算每个输入向量和查询向量之间的相关性。

    • 注意力分布(Attention Distribution):注意力分布表示在给定查询向量和输入信息的情况下,选择每个输入向量的概率分布。Softmax 函数被用于将分数转化为概率分布,其中每个分数由一个打分函数计算得到。

    • 打分函数(Scoring Function):打分函数衡量查询向量与输入向量之间的相关性。文中介绍了几种常用的打分函数,包括加性模型、点积模型、缩放点积模型和双线性模型。这些模型通过可学习的参数来调整注意力的计算。

      • 加性模型 s ( x , q ) = v T tanh ⁡ ( W x + U q ) \mathbf{s}(\mathbf{x}, \mathbf{q}) = \mathbf{v}^T \tanh(\mathbf{W}\mathbf{x} + \mathbf{U}\mathbf{q}) s(x,q)=vTtanh(Wx+Uq)

      • 点积模型 s ( x , q ) = x T q \mathbf{s}(\mathbf{x}, \mathbf{q}) = \mathbf{x}^T \mathbf{q} s(x,q)=xTq

      • 缩放点积模型 s ( x , q ) = x T q D \mathbf{s}(\mathbf{x}, \mathbf{q}) = \frac{\mathbf{x}^T \mathbf{q}}{\sqrt{D}} s(x,q)=D xTq (缩小方差,增大softmax梯度)

      • 双线性模型 s ( x , q ) = x T W q \mathbf{s}(\mathbf{x}, \mathbf{q}) = \mathbf{x}^T \mathbf{W} \mathbf{q} s(x,q)=xTWq (非对称性)

  5. 软性注意力机制

    • 定义:软性注意力机制通过一个“软性”的信息选择机制对输入信息进行汇总,允许模型以概率形式对输入的不同部分进行关注,而不是强制性地选择一个部分。

    • 加权平均:软性注意力机制中的加权平均表示在给定任务相关的查询向量时,每个输入向量受关注的程度,通过注意力分布实现。

    • Softmax 操作:注意力分布通常通过 Softmax 操作计算,确保它们成为一个概率分布。

1. 注意力权重矩阵可视化(矩阵热图)

【深度学习实验】注意力机制(一):注意力权重矩阵可视化(矩阵热图heatmap)

2. 掩码Softmax 操作

  掩码Softmax操作的用处在于在处理序列数据时,对于某些位置的输入可能需要进行忽略或者特殊处理。通过使用掩码张量,可以将这些无效或特殊位置的权重设为负无穷大,从而在进行Softmax操作时,使得这些位置的输出为0。
  这种操作通常在序列模型中使用,例如自然语言处理中的文本分类任务。在文本分类任务中,输入是一个句子或一个段落,长度可能不一致。为了保持输入的统一性,需要进行填充操作,使得所有输入的长度相同。然而,在经过填充操作后,一些位置可能对应于填充字符,这些位置的权重应该被忽略。通过使用掩码Softmax操作,可以确保填充位置的输出为0,从而在计算损失函数时不会对填充位置产生影响。

a. 导入必要的库

import torch
from torch import nn
import torch.nn.functional as F
from d2l import torch as d2l

b. masked_softmax

  带有掩码的 softmax 操作主要用于处理变长序列,其中填充的元素不应该对 softmax 操作的结果产生影响。

def masked_softmax(X, valid_lens):"""通过在最后一个轴上掩蔽元素来执行softmax操作"""# X:3D张量,valid_lens:1D或2D张量if valid_lens is None:return nn.functional.softmax(X, dim=-1)else:shape = X.shapeif valid_lens.dim() == 1:valid_lens = torch.repeat_interleave(valid_lens, shape[1])else:valid_lens = valid_lens.reshape(-1)# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens, value=-1e6)return nn.functional.softmax(X.reshape(shape), dim=-1)

参数解释

  • X: 一个三维张量,表示输入的 logits。

  • valid_lens: 一个一维或二维张量,表示每个序列的有效长度。如果是一维张量,它会被重复到匹配 X 的第二维。

函数流程

  1. 如果 valid_lensNone,则直接应用标准的 softmax 操作,返回 nn.functional.softmax(X, dim=-1)

  2. 如果 valid_lens 不是 None,则进行以下步骤:

    • 获取 X 的形状 shape

    • 如果 valid_lens 是一维张量,将其重复到匹配 X 的第二维,以便与 X 进行逐元素运算。

    • X 重塑为一个二维张量,形状为 (-1, shape[-1]),这样可以在最后一个轴上进行逐元素操作。

    • 使用 d2l.sequence_mask 函数,将有效长度外的元素替换为一个很大的负数(-1e6)。这样,这些元素在经过 softmax 后的输出会趋近于零。

    • 将处理后的张量重新塑形为原始形状,然后应用 softmax 操作。最终输出是带有掩码的 softmax 操作结果。

c. 实验结果

masked_softmax(torch.rand(3, 8, 5), torch.tensor([2, 2, 2]))
  • 随机生成了一个形状为 (3, 8, 5) 的 3D 张量,其中有效长度全为 2。

在这里插入图片描述

masked_softmax(torch.rand(3, 8, 5), torch.tensor([1, 2, 3]))

在这里插入图片描述

  • 使用二维张量,为矩阵样本中的每一行指定有效长度
masked_softmax(torch.rand(2, 2, 5), torch.tensor([[1, 3], [2, 4]]))
  • 对于形状为 (2, 2, 5) 的 3D 张量
    • 第一个二维矩阵的第一个序列的有效长度为 1,第二个序列的有效长度为 3。
    • 第二个二维矩阵的第一个序列的有效长度为 2,第二个序列的有效长度为 4。
      在这里插入图片描述

在这里插入图片描述

相关文章:

【深度学习实验】注意力机制(二):掩码Softmax 操作

文章目录 一、实验介绍二、实验环境1. 配置虚拟环境2. 库版本介绍 三、实验内容0. 理论介绍a. 认知神经学中的注意力b. 注意力机制: 1. 注意力权重矩阵可视化(矩阵热图)2. 掩码Softmax 操作a. 导入必要的库b. masked_softmaxc. 实验结果 ​ …...

idea运行项目之后一直卡在Writing classes… 解决方案

最近遇到idea里直接运行一个Spring boot项目后,idea一直慢悠悠的parsing java,然后就writing classes,然后就一直卡着不动了,运气好10几分钟能把项目启动起来。 多年的摸鱼经验告诉我,事出反常必有妖,赶紧…...

CentOS7 安装mysql8(离线安装)postgresql14(在线安装)

注:linux系统为vmware虚拟机,和真实工作环境可能有出入,不过正因如此我暴露了NAT转出的IP也没什么大碍 引言 postgresql与mysql目前都是非常受人欢迎的两大数据库,其各有各的优势,初学者先使用简单一张图来说明两者区…...

使用vant list实现订单列表,支持下拉加载更多

在公司项目开发时&#xff0c;有一个需求是实现可以分页的订单列表&#xff0c;由于是移动端项目&#xff0c;所以最好的解决方法是做下拉加载更多。 1.在页面中使用vant组件 <van-listv-model"loading":finished"finished"finished-text"没有更…...

OpenCV快速入门:图像形态学操作

文章目录 前言一、图像形态学基础1.1 背景介绍1.2 像素距离1.2.1 什么是像素距离&#xff1f;1.2.2 常见的像素距离度量方法1.2.3 计算像素距离的代码实现 1.3 图像连通性1.3.1 什么是图像连通性&#xff1f;1.3.2 连通类型1.3.3 连通组件标记1.3.4 连通性在图像处理中的应用 1…...

Scrapy----Scrapy简介

文章目录 概述与应用背景架构和组件功能和特点社区生态概述与应用背景 Scrapy,一个高效、灵活、且强大的Web爬取框架,被广泛应用于数据抓取和网页内容的结构化提取。它是用Python编写的,支持多平台运行,适用于数据挖掘、在线零售信息收集、历史数据存档等多种场景。Scrapy…...

基环树(pseudotree)入门

目录 无向基环树找环&#xff0c;[题目](https://www.luogu.com.cn/problem/P8655)拓扑排序找环并查集找环dfs找环 内向基环树[2876. 有向图访问计数](https://leetcode.cn/problems/count-visited-nodes-in-a-directed-graph/description/)[2127. 参加会议的最多员工数](https…...

nrm的安装以及使用

1&#xff0c;什么是nrm nrm 是一个 npm 源管理器&#xff0c;允许你快速地在 npm源间切换。 什么意思呢&#xff0c;npm默认情况下是使用npm官方源&#xff08;使用npm config ls命令可以查看&#xff09;&#xff0c;在国内用这个源肯定是不靠谱的&#xff0c;一般我们都会…...

Linux:补充一些常用命令

Linux&#xff1a;补充一些常用命令 1. free -h2. df -lh3. du -sh *4. uname -a5. which6. mvn install 编译打包7. find -name *.jar8. cd -9. nohup java -jar *.jar &10. ps -ef|grep java11. netstat -ntlp 1. free -h free 命令显示系统使用和空闲的内存情况&#x…...

Maven编译报错:javacTask: 源发行版 1.8 需要目标发行版 1.8

报错截图&#xff1a; IDEA中的jdk检查都正常设置的1.8一点毛病没有。参考其他帖子链接如下&#xff1a; https://blog.csdn.net/zhishidi/article/details/131480199https://blog.51cto.com/u_16213460/7197764https://blog.csdn.net/lck_csdn/article/details/125387878 逐…...

python批量为视频添加文字水印和图片水印的程序

如题&#xff0c;代码如下&#xff0c;可设置多个图片水印及它们的移动位置 功能为&#xff1a;可以添加多个动态移动的水印&#xff0c;还可以设置水印的大小以及移动速度&#xff0c;也可以增加文字水印&#xff0c;重点是这个是批量执行的&#xff0c;可以对目录下的所有视…...

使用 webpack 打包 express 应用

使用 webpack 打包 express 应用 安装 webpack 依赖 pnpm add webpack webpack-cli -D初始化配置 可以使用命令 webpack init 初始化配置或者直接自己创建 webpack.config.js 文件和增加 npm 脚本&#xff1a; 下面是 npm 脚本 和 webpack.config.js 配置&#xff1a; // G…...

Add the installation prefix of “Qt5“ to CMAKE_PREFIX_PATH or set “Qt5_DIR“解决

修改为Qt5安装目录...

深度学习——(生成模型)DDPM

前置数学知识 1、先验概率和后验概率 先验概率&#xff1a;根据以往经验和分析得到的概率,它往往作为“由因求果”问题中的“因”出现&#xff0c;如 q ( x t ∣ x t − 1 ) q(x_t|x_{t-1}) q(xt​∣xt−1​) 后验概率&#xff1a;指在得到“结果”的信息后重新修正的概率,是…...

uniapp如何使用api相关提示框

uni.showToast&#xff1a;用于显示一条带有图标的提示框。title&#xff1a;提示的内容。icon&#xff1a;图标&#xff0c;可选值包括 success、loading、none。duration&#xff1a;提示框持续时间&#xff08;单位&#xff1a;毫秒&#xff09;&#xff0c;默认为1500。 un…...

在Java代码中指定用JAXB的XmlElement注解的元素的顺序

例如&#xff0c;下面的类RegisterResponse 使用了XmlRootElement注解&#xff0c;同时也使用XmlType注解&#xff0c;并用XmlType注解的propOrder属性&#xff0c;指定了两个用XmlElement注解的元素出现的顺序&#xff0c;先出现flag&#xff0c;后出现enterpriseId&#xff0…...

Linux 基本语句_11_无名管道文件复制

父子进程&#xff1a; 父子进程的变量之间存在着读时共享&#xff0c;写时复制原则 无名管道&#xff1a; 无名管道仅能用于有亲缘关系的进程之间通信如父子进程 代码&#xff1a; #include <stdio.h> #include <unistd.h> #include <sys/types.h> #inc…...

侧面多级菜单(一个大类、一个小类、小类下多个物体)

效果&#xff1a; 说明&#xff1a; 左右侧面板使用Animator组件控制滑入滑出。左侧面板中&#xff0c;左的左里面是大类&#xff0c;左的右有绿色的小类&#xff0c;绿色的小类下有多个真正的UI图片按钮。 要点&#xff1a; 结合了一点EasyGridBuilderPro插件的UI元素&…...

2-(脏读,不可重复读,幻读 ,mysql5.7以后默认隔离级别)、( 什么是qps,tps,并发量,pv,uv)、(什么是接口幂等性问题,如何解决?)

1 脏读&#xff0c;不可重复读&#xff0c;幻读 &#xff0c;mysql5.7以后默认隔离级别是什么&#xff1f; 2 什么是qps&#xff0c;tps&#xff0c;并发量&#xff0c;pv&#xff0c;uv 3 什么是接口幂等性问题&#xff0c;如何解决&#xff1f; 1 脏读&#xff0c;不可重复读…...

wpf devexpress 创建布局

模板解决方案 例子是一个演示连接数据库连接程序。打开RegistrationForm.BaseProject项目和如下步骤 RegistrationForm.Lesson1 项目包含结果 审查Form设计 使用LayoutControl套件创建混合控件和布局 LayoutControl套件包含三个主控件&#xff1a; LayoutControl - 根布局…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

linux之kylin系统nginx的安装

一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源&#xff08;HTML/CSS/图片等&#xff09;&#xff0c;响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址&#xff0c;提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

ssc377d修改flash分区大小

1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...