线性代数学习-1
线性代数学习-1
- 行图像和列图像
- 行图像
- 列图像
- 总结
本文转载于https://herosunly.blog.csdn.net/article/details/88698381
该文章本人认为十分有用,便自己敲一遍笔记加固印象
原文链接 原文
这个笔记感觉比我老师讲的更加透彻,清晰。很好的展示了线性代数的原理,强烈推荐看原文
行图像和列图像
线性方程的几何图像
线性代数的一个重要问题是求解n元一次方程组。例如下面的二元方程组

用矩阵表示如下所示:

其中
称为是系数矩阵,未知数向量
,等号右侧的向量记为b。可得Ax=b
行图像

行图像和解析几何的结果是一致的,即每个方程的图像为一条直线。绘制出两个方程组对应的直线,两条直线交点即为方程组的解x=1,y=2。
列图像
在列图像中,我们将系数举证按列划分,即把矩阵分解成若干列向量的形式,则求解原方程可转化为为寻找列向量的线性组合来构成向量b。

向量的线性组合是课程的重要概念之一。其中线性组合指的是向量的加法和向量的数乘。其中向量的加法需满足平行四边形法则或者三角形法则,向量的数乘指的是向量的伸缩(其中系数大于1则进行伸展,小于1则进行收缩)。其中,基向量的线性组合能够表示整个空间。
从几何上讲,我们是寻找满足如下要求的x和y,是的两者分别数乘对应的列向量之后相加得到向量
如果只是二元方程,可能还看不出来列图像的优势,如果是多元方程,就显而易见了。

对于方程组Ax=b而言,如果改变等号右侧向量b的数值,那么对于行图像而言三个平面都改变了,而对于列图像而言,三个向量并没有发生改变,只是需要寻找一个新的组合
总结
1、行图像是将方程化成图像,而方程组组成的多个图像的交点就是方程组的解
2、列图像是将未知数的系数合并成一个列向量,用列向量来表示一个方程组
相关文章:
线性代数学习-1
线性代数学习-1行图像和列图像行图像列图像总结本文转载于https://herosunly.blog.csdn.net/article/details/88698381 该文章本人认为十分有用,便自己敲一遍笔记加固印象原文链接 原文这个笔记感觉比我老师讲的更加透彻,清晰。很好的展示了线性代数的原…...
人工智能写的十段代码,九个通过测试了
“抢走你工作的不会是 AI ,而是先掌握 AI 能力的人” 编程测试 1. 我想用golang实现二叉树前序,请你帮我写一下代码。 // 定义二叉树节点 type TreeNode struct {Val intLeft *TreeNodeRight *TreeNode }// 前序遍历 func PreOrderTraversal(root *Tre…...
巴塞尔问题数值逼近方法
巴塞尔问题:计算所有平方数的导数和 ∑n1∞1n2limn→∞(112122⋯1n2)\sum_{n1}^{\infty} \frac{1}{n^{2}}\lim _{n \rightarrow\infty}\left(\frac{1}{1^{2}}\frac{1}{2^{2}}\cdots\frac{1}{n^{2}}\right)n1∑∞n21n→∞lim(121221⋯n21) 其理论解为…...
【深度学习环境】Docker
1. Docker 相关安装配置 1.1 docker 安装 参考:https://www.runoob.com/docker/ubuntu-docker-install.html 1.2 nvidia-docker 安装 参考:https://zhuanlan.zhihu.com/p/37519492 1.3 代理加速 参考:https://yeasy.gitbook.io/docker_…...
基于vscode开发vue项目的详细步骤教程 2 第三方图标库FontAwesome
1、Vue下载安装步骤的详细教程(亲测有效) 1_水w的博客-CSDN博客 2、Vue下载安装步骤的详细教程(亲测有效) 2 安装与创建默认项目_水w的博客-CSDN博客 3、基于vscode开发vue项目的详细步骤教程_水w的博客-CSDN博客 目录 六、第三方图标库FontAwesome 1 安装FontAwesome 解决报…...
今天面了个腾讯拿25K出来的软件测试工程师,让我见识到了真正的天花板...
今天上班开早会就是新人见面仪式,听说来了个很厉害的大佬,年纪还不大,是上家公司离职过来的,薪资已经达到中高等水平,很多人都好奇不已,能拿到这个薪资应该人不简单,果然,自我介绍的…...
OSG三维渲染引擎编程学习之六十九:“第六章:OSG场景工作机制” 之 “6.9 OSG数据变量”
目录 第六章 OSG场景工作机制 6.9 OSG数据变量 第六章 OSG场景工作机制 作为一个成熟的三维渲染引擎,需要提供快速获取场景数据、节点等信息,具备自定义数据或动画更新接口,能接收应用程序或窗口等各类消息。OSG三维渲染引擎能较好地完成上述工作,OSG是采用什么方式或工作…...
Tektronix泰克TDP3500差分探头3.5GHz
附加功能: 带宽:3.5 GHz 差分输入电容:≤0.3 pF 差分输入电阻:100 kΩ DC pk 交流输入电压:15 V >60 dB 在 1 MHz 和 >25 dB 在 1 GHz CMRR 出色的共模抑制——减少较高共模环境中的测量误差 低电容和电阻负载…...
轻松实现内网穿透:实现远程访问你的私人网络
导语:内网穿透是什么?为什么我们需要它?今天我们将介绍这个令人惊叹的技术,让你实现远程访问你的私人网络。 使用内网穿透,轻松实现外网访问本地部署的网站 第一部分:什么是内网穿透? 通俗解释…...
MySQL长字符截断
MySQL超长字符截断又名"SQL-Column-Truncation",是安全研究者Stefan Esser在2008 年8月提出的。 在MySQL中的一个设置里有一个sql_mode选项,当sql_mode设置为default时,即没有开启STRICT_ALL_TABLES选项时(MySQLsql_mo…...
python计算量比指标
百度百科是这么写的:量比定义:股市开市后平均每分钟的成交量与过去5个交易日平均每分钟成交量之比。计算公式:量比(现成交总手数 / 现累计开市时间(分) )/ 过去5日平均每分钟成交量。这里公式没有问题,但是…...
下拉框推荐-Suggest-SUG
什么是下拉框推荐 在我们使用各种app(飞猪)想要搜索我们想要的东西,假设我想要上海迪士尼的门票,那么精确的query是“上海迪士尼门票”,要打7个字,如果在你输入“上海”的时候app就推荐了query“上海迪士尼…...
Nmap的几种扫描方式以及相应的命令
Nmap是一款常用的网络扫描工具,它可以扫描目标网络上的主机和服务,帮助安全研究员了解目标网络的拓扑结构和安全情况。以下是Nmap的几种扫描方式以及相应的命令: 1.Ping扫描 Ping扫描可以用来探测网络上响应的主机,可以使用“-sn…...
Qt::QOpenGLWidget 渲染天空壳
在qt窗口中嵌入opengl渲染天空壳和各种立方体一 学前知识天空壳的渲染学前小知识1 立方体贴图 天空壳的渲染就是利用立方体贴图来实现渲染流程2 基础光照 光照模型3 opengl帧缓冲 如何自定义帧缓冲实现后期特效4 glsl常见的shader内置函数 glsl编程常用的内置函数二 shader代码…...
谷歌搜索技巧大全 | 谷歌高级搜索语法指令
谷歌搜索技巧是利用各种高级搜索语法或者搜索指令,让我们能够使用Google进行精确化的搜索,外贸找客户和学术文件查找都可以应用到这些搜索技巧。(大部分命令也适用百度搜索)。Google通过互联网收集数据,抓取有意义的信息,将其存储…...
JAVA开发(JAVA垃圾回收的几种常见算法)
JAVA GC 是JAVA虚拟机中的一个系统或者说是一个服务,专门是用于内存回收,交还给虚拟机的功能。 JAVA语言相对其他语言除了跨平台性,还有一个最重要的功能是JAVA语言封装了对内存的自动回收。俗称垃圾回收器。所以有时候我们不得不承认&#…...
你还不会用CAD一键布置停车位?赶紧学起来!
在设计CAD建筑图的过程中,你还在一个一个地画停车位吗?那未免也太低效了吧!今天,小编用浩辰CAD建筑软件来教大家一键布置停车位,赶紧学起来吧! 浩辰CAD建筑软件是行业应用最广泛的创新型建筑设计专业软件&…...
【MySQL之MySQL底层分析篇】系统学习MySQL,从应用SQL语法到底层知识讲解,这将是你见过最完成的知识体系
文章目录MySQL体系结构MySQL存储结构(以InnoDB为例)MySQL执行流程(以InnoDB为例)1. 数据写入原理2. 数据查询原理MySQL存储引擎1. 为什么需要不同的存储引擎2. 如何为数据指定不同的存储引擎,数据粒度又是多少3. MySQL…...
单核CPU是否有线程可见性问题?
本文仅是本人对问题的思考记录,并没有实操验证,有误请大家评论指出。 今天见到了一个经典的问题,单核CPU是否有线程可见性问题,学完操作系统应该可以直接回答,不会有线程安全问题。但如果结合JVM虚拟机来进行分析&…...
MyBatis 架构介绍
MyBatis 架构介绍MyBatis 架构图MyBatis 所解决的 JDBC 中存在的问题引用MyBatis 架构图 mybatis 配置:mybatis-config.xml,此文件作为 mybatis 的全局配置文件,配置了 mybatis 的运行环境等信息。另一个 mapper.xml 文件即 sql 映射文件,文件…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...
智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql
智慧工地管理云平台系统,智慧工地全套源码,java版智慧工地源码,支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求,提供“平台网络终端”的整体解决方案,提供劳务管理、视频管理、智能监测、绿色施工、安全管…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
高考志愿填报管理系统---开发介绍
高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...
6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙
Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...
