当前位置: 首页 > news >正文

R语言实现多变量孟德尔随机化分析(1)

多变量孟德尔随机化分析调整了潜在混杂因素的影响。

1、调整哪些因素?参考以往文献。可以分别调整,也可以一起调整。

2、解决了什么问题?某个暴露相关的SNP,往往与某个或者某几个混杂因素相关。可以控制混杂偏倚。

3、如何解释结果?若该暴露的P值小于0.05,则可以说明该暴露独立于其他暴露对结局产生影响。否则是通过其他因素对结局产生影响。

#多变量孟德尔随机化(MVMR)
library(TwoSampleMR)
#提取多个暴露变量工具
#body mass index:ieu-b-40;
#hypertension:ebi-a-GCST90038604
#creatinine:ebi-a-GCST90025946
exposure_dat_mv<-mv_extract_exposures(c("ieu-b-40","ebi-a-GCST90038604","ebi-a-GCST90025946")) #Serum creatinine levels、Smoking initiation#提取结局信息
outcome_dat_mv<-extract_outcome_data(exposure_dat_mv$SNP,"ebi-a-GCST90013862") #colorectal cancer#整合数据
mvdat<-mv_harmonise_data(exposure_dat_mv,outcome_dat_mv,harmonise_strictness = 2)#进行MVMR的分析
res <- mv_multiple(mvdat)#提取结果
result<-res$result
#install package
# remotes::install_github("WSpiller/RMVMR",
#                         build_opts=c("--no-resave-data", "--no-manual"),
#                         build_vignettes = TRUE)
library(MVMR)
help(package="MVMR")
wer <- format_mvmr(BXGs = mvdat[["exposure_beta"]],BYG = mvdat[["outcome_beta"]],seBXGs = mvdat[["exposure_se"]],seBYG = mvdat[["outcome_se"]],RSID = rownames(mvdat[["exposure_beta"]]))
#IVW多变量孟德尔随机化结果
ivw_mvmr(wer)
#计算F值
Fz<- strength_mvmr(r_input = wer, gencov = 0)
#异质性检验
pres <- pleiotropy_mvmr(r_input = wer, gencov = 0)

相关文章:

R语言实现多变量孟德尔随机化分析(1)

多变量孟德尔随机化分析调整了潜在混杂因素的影响。 1、调整哪些因素&#xff1f;参考以往文献。可以分别调整&#xff0c;也可以一起调整。 2、解决了什么问题&#xff1f;某个暴露相关的SNP&#xff0c;往往与某个或者某几个混杂因素相关。可以控制混杂偏倚。 3、如何解释…...

搭建 AI 图像生成器 (SAAS) php laravel

今天来搭一套&#xff0c;AI 图像生成器 是基于 Openai DALLE 2 和 Openai DALLE 3 以及 Stability AI 和稳定扩散 API 构建的脚本&#xff0c;为用户提供了使用简单的提示和大小生成独特自定义图像的可能性。在这个平台上&#xff0c;创意得以快速、高效地实现&#xff0c;借助…...

Maven引用本地jar包

先上命令: ​ mvn install:install-file -Dfile..\.m2\repository\jl1.0.1.jar -DgroupId"com.liz.local" -DartifactId"jl" -Dversion"1.0.1" -Dpackagingjar​ 参数注释: -Dfile: jar 包路径&#xff08;建议放在 meven 的 repository&…...

一起学docker系列之五docker的常用命令--操作容器的命令

目录 前言1 启动容器2 查看容器3 退出容器4 启动已经停止的容器5 重启容器6 停止容器7 删除已经停止的容器8 启动容器说明和举例9 查看容器日志10 查看容器内运行的进程11 查看容器内部细节12 进入正在运行的容器并进行交互13 导入和导出容器结语 前言 当涉及到容器化技术&…...

WPF打开对话框选择文件、选择文件夹

在WPF中实现文件的打开和选择&#xff0c;可以通过使用Microsoft.Win32.OpenFileDialog类来完成。这是一个通用的对话框组件&#xff0c;允许用户在本地文件系统中浏览和选择文件。这个组件属于WPF的一部分&#xff0c;因此不需要引用额外的库。 以下是一个如何使用OpenFileDi…...

nginx学习(3)

Nginx 负载均衡 实战案例 实现效果 浏览器地址栏输入地址 http://172.31.0.99/oa/a.html&#xff0c;负载均衡效果&#xff0c;平均 8083 和 8084 端口中 一、配置 1、先创建2个文件夹&#xff0c;并将apache-tomcat-8.5.87解压到tomcat8083和tomcat8084中 &#xff08;或…...

【系统架构设计】计算机公共基础知识: 4 数据库系统

目录 一 数据库模式 二 分布式数据库 三 索引和视图 四 数据库设计 五 关系代数...

主键问题以及分布式 id

分布式 id 需要处理的问题主要是同一时间在多台机器中保证生成的 id 唯一&#xff0c;为了这么做我们可以这么做&#xff1a; 分布式 id 生成策略 先说几个已经被淘汰的策略引出分布式 id 的问题 1&#xff0c;UUID&#xff1a;UUID 随机并且唯一&#xff0c;在单一的数据库…...

ReentranReadWriteLock 使用案例

ReentranReadWriteLock使用案例 /*** ReentranReadWriteLock 使用案例* 读线程共享* 写线程互斥*/ public class ReentrantReadWriteLockExample {private String news;private ReentrantReadWriteLock lock new ReentrantReadWriteLock();public String readNews() {lock.re…...

“我们把最扎心的话,说给了自己最亲近的人” 何解?| IDCF

引子 我们把最好的一面给了陌生人&#xff0c;却把最扎心的话&#xff0c;说给了自己最亲近的人。 我们往往会对关心自己的人发脾气&#xff0c;很多时候意图是好的&#xff0c;表达方式却简单粗暴&#xff0c;结果自然不必多言。你认为自己给的是反馈和建议&#xff0c;对方…...

MongoDB之索引和聚合

文章目录 一、索引1、说明2、原理3、相关操作3.1、创建索引3.2、查看集合索引3.3、查看集合索引大小3.4、删除集合所有索引&#xff08;不包含_id索引&#xff09;3.5、删除集合指定索引 4、复合索引 二、聚合1、说明2、使用 总结 一、索引 1、说明 索引通常能够极大的提高查…...

【GEE】基于GEE进行非监督学习

1 简介与摘要 之前写了多季节叠加的监督学习&#xff0c;所以这次简单写一个非监督学习吧。。 这次为了简单明了&#xff0c;就不整那么多虚的了&#xff0c;在这里我不叠图层了&#xff0c;有需要的可以参考前一篇博客自己添加输入的图层。 2 制作输入影像 首先&#xff0c…...

多视图聚类的论文阅读(一)

当聚类的方式使用的是某一类预定义好的相似性度量时&#xff0c; 会出现如下情况&#xff1a; 数据聚类方面取得了成功&#xff0c;但它们通常依赖于预定义的相似性度量&#xff0c;而这些度量受原始方法的影响:当输入维数相对较高时&#xff0c;往往是无效的。 1. Deep Mult…...

K-Means算法进行分类

已知数据集D中有9个数据点&#xff0c;分别是&#xff08;1,2&#xff09;&#xff0c;(2,3), (2,1), (3,1),(2,4),(3,5),(4,3),(1,5),(4,2)。采用K-Means算法进行聚类&#xff0c;k2&#xff0c;设初始中心点为&#xff08;1.1,2.2&#xff09;&#xff0c;&#xff08;2.3,3.…...

深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv 计算机竞赛

文章目录 0 前言1 课题背景2 实现效果3 DeepSORT车辆跟踪3.1 Deep SORT多目标跟踪算法3.2 算法流程 4 YOLOV5算法4.1 网络架构图4.2 输入端4.3 基准网络4.4 Neck网络4.5 Head输出层 5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; *…...

网络协议入门 笔记一

一、服务器和客户端及java的概念 JVM (Java Virtual Machine) : Java虚拟机&#xff0c;Java的跨平台:一次编译&#xff0c;到处运行&#xff0c;编译生成跟平台无关的字节码文件 (class文件)&#xff0c;由对应平台的JVM解析字节码为机器指令 (010101)。 如下图所示&#xff0…...

系列十一、你平时工作用过的JVM常用基本配置参数有哪些?

一、常用参数 1.1、-Xms 功能&#xff1a;初始内存大小&#xff0c;默认为物理内存的1/64&#xff0c;等价于 -XX:InitialHeapSize 1.2、-Xmx 功能&#xff1a;最大分配内存&#xff0c;默认为物理内存的1/4&#xff0c;等价于 -XX:MaxHeapSize 1.3、-Xss 功能&#xff1a;设置…...

如何为视频添加旁白,有哪些操作技巧?

简而言之&#xff0c;画外音是视频的旁白&#xff0c;在教程视频中添加旁白可以使视频更加有趣&#xff0c;并向观看者传达更多的信息。 如果您是视频制作人&#xff0c;想要为视频添加旁白&#xff0c;可阅读以下文章&#xff0c;可以帮助您更好地进行配音。 制作配音的技巧…...

如何简单挖掘公益SRC?

目录 1、寻找漏洞 1)谷歌语法 2)fofa 2、挖掘漏洞 3、提交报告 第一步&#xff1a;“标题”和“厂商信息”和“所属域名” 第二步&#xff1a;其它内容 第三步&#xff1a;复现步骤 0、IP域名归属证明 1、漏洞页 2、该干啥 3、注入的结果 4、上榜吉时 时间&#x…...

PhpStorm激活

https://www.lmcc.top/articles/485.html 可用&#xff1a; 1、打开https://search.censys.io/ 2、搜索&#xff1a;services.http.response.headers.location: account.jetbrains.com/fls-auth 3、可以看到出现了很多对应跳转到 jetbrains 的服务器IP和网址,我们随便点击一…...

利用最小二乘法找圆心和半径

#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

Leetcode 3576. Transform Array to All Equal Elements

Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到&#xf…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

Linux云原生安全:零信任架构与机密计算

Linux云原生安全&#xff1a;零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言&#xff1a;云原生安全的范式革命 随着云原生技术的普及&#xff0c;安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测&#xff0c;到2025年&#xff0c;零信任架构将成为超…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...