当前位置: 首页 > news >正文

卷积神经网络(CNN)多种图片分类的实现

文章目录

  • 前期工作
    • 1. 设置GPU(如果使用的是CPU可以忽略这步)
      • 我的环境:
    • 2. 导入数据
    • 3.归一化
    • 4.可视化
  • 二、构建CNN网络模型
  • 三、编译模型
  • 四、训练模型
  • 五、预测
  • 六、模型评估

前期工作

1. 设置GPU(如果使用的是CPU可以忽略这步)

我的环境:

  • 语言环境:Python3.6.5
  • 编译器:jupyter notebook
  • 深度学习环境:TensorFlow2.4.1
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")

2. 导入数据

import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()

3.归一化

# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0train_images.shape,test_images.shape,train_labels.shape,test_labels.shape

4.可视化

class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']plt.figure(figsize=(20,10))
for i in range(20):plt.subplot(5,10,i+1)plt.xticks([])plt.yticks([])plt.grid(False)plt.imshow(train_images[i], cmap=plt.cm.binary)plt.xlabel(class_names[train_labels[i][0]])
plt.show()

在这里插入图片描述

二、构建CNN网络模型

model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), #卷积层1,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层1,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层2,卷积核3*3layers.MaxPooling2D((2, 2)),                   #池化层2,2*2采样layers.Conv2D(64, (3, 3), activation='relu'),  #卷积层3,卷积核3*3layers.Flatten(),                      #Flatten层,连接卷积层与全连接层layers.Dense(64, activation='relu'),   #全连接层,特征进一步提取layers.Dense(10)                       #输出层,输出预期结果
])model.summary()  # 打印网络结构
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 30, 30, 32)        896       
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 15, 15, 32)        0         
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 13, 13, 64)        18496     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 6, 6, 64)          0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 4, 4, 64)          36928     
_________________________________________________________________
flatten (Flatten)            (None, 1024)              0         
_________________________________________________________________
dense (Dense)                (None, 64)                65600     
_________________________________________________________________
dense_1 (Dense)              (None, 10)                650       
=================================================================
Total params: 122,570
Trainable params: 122,570
Non-trainable params: 0
_________________________________________________________________

三、编译模型

model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])

四、训练模型

history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
Epoch 1/10
1563/1563 [==============================] - 9s 4ms/step - loss: 1.7862 - accuracy: 0.3390 - val_loss: 1.2697 - val_accuracy: 0.5406
Epoch 2/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.2270 - accuracy: 0.5595 - val_loss: 1.0731 - val_accuracy: 0.6167
Epoch 3/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.0355 - accuracy: 0.6337 - val_loss: 0.9678 - val_accuracy: 0.6610
Epoch 4/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.9221 - accuracy: 0.6727 - val_loss: 0.9589 - val_accuracy: 0.6648
Epoch 5/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.8474 - accuracy: 0.7022 - val_loss: 0.8962 - val_accuracy: 0.6853
Epoch 6/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.7814 - accuracy: 0.7292 - val_loss: 0.9124 - val_accuracy: 0.6873
Epoch 7/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.7398 - accuracy: 0.7398 - val_loss: 0.8924 - val_accuracy: 0.6929
Epoch 8/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.7008 - accuracy: 0.7542 - val_loss: 0.9809 - val_accuracy: 0.6854
Epoch 9/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.6474 - accuracy: 0.7732 - val_loss: 0.8549 - val_accuracy: 0.7137
Epoch 10/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.6041 - accuracy: 0.7889 - val_loss: 0.8909 - val_accuracy: 0.7046

五、预测

通过模型进行预测得到的是每一个类别的概率,数字越大该图片为该类别的可能性越大

plt.imshow(test_images[10])

在这里插入图片描述

输出测试集中第一张图片的预测结果

import numpy as nppre = model.predict(test_images)
print(class_names[np.argmax(pre[10])])
313/313 [==============================] - 1s 3ms/step
airplane

六、模型评估

import matplotlib.pyplot as pltplt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)

在这里插入图片描述

print(test_acc)
0.7166000008583069

相关文章:

卷积神经网络(CNN)多种图片分类的实现

文章目录 前期工作1. 设置GPU(如果使用的是CPU可以忽略这步)我的环境: 2. 导入数据3.归一化4.可视化 二、构建CNN网络模型三、编译模型四、训练模型五、预测六、模型评估 前期工作 1. 设置GPU(如果使用的是CPU可以忽略这步&#…...

【备忘录】Docker容器、镜像删除与资源清理命令

文章目录 一,删除容器二,删除镜像三,清理资源 一,删除容器 # 启动时设置 --rm 选项,容器退出时会自动清理内部文件系统 # --rm 不要与 -d 同时使用,或者说同时使用没有意义 docker run --rm #停止所有的容…...

使用 Splashtop 的开放 API 简化 IT 工作流程

我们的工作方式在不断变化,IT 技术人员必须迅速适应时代的变化。越来越多的公司正在转向混合和远程策略,这为那些在服务台或IT技术人员工作的人增加了额外的工作层。对于系统管理员来说,管理一切都可能变得更加复杂。 找到合适的软件来管理多…...

使用requests库进行网络爬虫:IP请求错误的解决方法

目录 引言 一、了解requests库 二、遇到的问题 三、解决方法 1、随机化IP地址 2、减少请求频率 3、使用User Agent模拟浏览器行为 4、使用Cookies 四、注意事项 五、使用代理池 六、总结 引言 在利用Python的requests库进行网络爬虫操作时,我们有时会遇…...

Web之CSS笔记

Web之HTML、CSS、JS 二、CSS(Cascading Style Sheets层叠样式表)CSS与HTML的结合方式CSS选择器CSS基本属性CSS伪类DIVCSS轮廓CSS边框盒子模型CSS定位 Web之HTML笔记 Web之JavaScript(jQuery)笔记 二、CSS(Cascading Style Sheets层叠样式表&…...

CentOS to KeyarchOS 系统迁移体验

1. KOS(KeyarchOS)——云峦操作系统简介 KeyarchOS 即云峦操作系统(简称 KOS)是浪潮信息基于 Linux 内核、龙蜥等开源技术自主研发的一款服务器操作系统,支持x86、ARM 等主流架构处理器,广泛兼容传统 CentOS 生态产品和创新技术产品,可为用户…...

如何从零开始制作一本企业宣传画册?

最近公司领导要求为公司制作一本企业宣传画册,用来展示我们的产品和服务,增加品牌影响力。可是,像我这种零基础的小白,完全不知道如何制作啊?对此我感到很焦虑,怕做不好影响公司形象,也怕耽误时…...

Android问题笔记四十六:解决open failed: EACCES (Permission denied) 问题

点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列点击跳转>ChatGPT和AIGC 👉关于作者 专…...

Universal adversarial perturbations(2017 CVPR)

Universal adversarial perturbations----《普遍对抗扰动》 通俗UAP算法步骤理解:对于 x i ∈ X {x_i} \in X xi​∈X 的每个采样数据点,比较 k ^ ( x i v ) \hat k({x_i} v) k^(xi​v) 与 k ^ ( x i ) \hat k({x_i}) k^(xi​) ,如果 k…...

前台查看日志功能

前台 <template><div id="logContent"><div class="onlinlog"><div class="left"><div class="number">显示字符数:<span><el-selectv-model="strNumber"placeholder="50000…...

mysqlbinlog使用记录

首先要确认mysql启用了binlog功能。一般默认启用。 mysql> select log_bin; ----------- | log_bin | ----------- | 1 | ----------- 然后确认binlog目录 mysql> select log_bin_basename; ---------------------------- | log_bin_basename | -----…...

学习c#的第十八天

目录 C# 文件的输入与输出 C# I/O 类 FileStream 类 文本文件的读写 StreamReader 类 StreamWriter 类 实例 二进制文件的读写 BinaryReader 类 BinaryWriter 类 实例 Windows 文件系统的操作 DirectoryInfo 类 FileInfo 类 实例 C# 文件的输入与输出 一个 文件…...

element + vue3,级联选择器实现省市区

由于es6支持哈希&#xff0c;所以数据量只要不太大&#xff0c;就不需要对el-cascader进行点击后在调接口出现下一级&#xff0c;很简单的就是直接获取所有数据。 <template><div><el-cascader :modelValue"modelValue" :props"innerProps"…...

程序员的护城河-并发编程

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码&#x1f525;如果感觉博主的文章还不错的话&#xff0c;请&#x1f44d;三连支持&…...

外卖小程序系统:数字化餐饮的编码之道

在当今数字化时代&#xff0c;外卖小程序系统成为了餐饮业的一项技术巨制。这个系统不仅提供了便捷的点餐体验&#xff0c;更通过先进的技术手段&#xff0c;实现了高效订单处理、实时配送追踪以及个性化推荐。让我们深入了解外卖小程序系统的技术魔法&#xff0c;一起揭秘数字…...

单链表相关面试题--1.删除链表中等于给定值 val 的所有节点

/* 解题思路&#xff1a;从头节点开始进行元素删除&#xff0c;每删除一个元素&#xff0c;需要重新链接节点 */ struct ListNode* removeElements(struct ListNode* head, int val) {if(head NULL)return NULL;struct ListNode* cur head;struct ListNode* prev NULL;while…...

一生一芯18——Chisel模板与Chisel工程构建

Chisel模板链接如下&#xff1a; 链接: https://pan.baidu.com/s/1DNDKpz5VnTxPgoZBBOd-Ww?pwdrevg 提取码: revg Chisel转Verilog模板如下&#xff1a; 链接: https://pan.baidu.com/s/1T9JQL5BccxqI4bscfU-JyA?pwd7rw2 提取码: 7rw2 以下使用sbt作为构建工具 Chisel项目构…...

ES6 class类

基本介绍 1. constructor constructor()方法是类的默认方法&#xff0c;通过new命令生成对象实例时&#xff0c;自动调用该方法。 一个类必须有constructor()方法&#xff0c;如果没有显式定义&#xff0c;一个空的constructor()方法会被默认添加。如&#xff1a; class Po…...

Java的IO流-打印流

打印流 PrintStream public void println&#xff08;&#xff09;自动换行 PrintWriter package com.itheima.println;import java.io.FileInputStream; import java.io.PrintStream; import java.io.PrintWriter;public class Test2 {public static void main(String[] arg…...

如何使用$APPEALS法,分析用户期待?

$APPEALS分析法是一种用于分析用户期待和需求的方法&#xff0c;它可以帮助企业全方位多角度地了解客户对产品的期望&#xff0c;有助于企业多维度有侧重地调整市场规划和产品改进策略&#xff0c;帮助企业打造优势产品&#xff0c;提高市场竞争力。 下面是使用$APPEALS分析法来…...

【Oracle APEX开发小技巧12】

有如下需求&#xff1a; 有一个问题反馈页面&#xff0c;要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据&#xff0c;方便管理员及时处理反馈。 我的方法&#xff1a;直接将逻辑写在SQL中&#xff0c;这样可以直接在页面展示 完整代码&#xff1a; SELECTSF.FE…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

工程地质软件市场:发展现状、趋势与策略建议

一、引言 在工程建设领域&#xff0c;准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具&#xff0c;正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...