卷积神经网络(CNN)多种图片分类的实现
文章目录
- 前期工作
- 1. 设置GPU(如果使用的是CPU可以忽略这步)
- 我的环境:
- 2. 导入数据
- 3.归一化
- 4.可视化
- 二、构建CNN网络模型
- 三、编译模型
- 四、训练模型
- 五、预测
- 六、模型评估
前期工作
1. 设置GPU(如果使用的是CPU可以忽略这步)
我的环境:
- 语言环境:Python3.6.5
- 编译器:jupyter notebook
- 深度学习环境:TensorFlow2.4.1
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")
2. 导入数据
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
import matplotlib.pyplot as plt(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()
3.归一化
# 将像素的值标准化至0到1的区间内。
train_images, test_images = train_images / 255.0, test_images / 255.0train_images.shape,test_images.shape,train_labels.shape,test_labels.shape
4.可视化
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer','dog', 'frog', 'horse', 'ship', 'truck']plt.figure(figsize=(20,10))
for i in range(20):plt.subplot(5,10,i+1)plt.xticks([])plt.yticks([])plt.grid(False)plt.imshow(train_images[i], cmap=plt.cm.binary)plt.xlabel(class_names[train_labels[i][0]])
plt.show()

二、构建CNN网络模型
model = models.Sequential([layers.Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)), #卷积层1,卷积核3*3layers.MaxPooling2D((2, 2)), #池化层1,2*2采样layers.Conv2D(64, (3, 3), activation='relu'), #卷积层2,卷积核3*3layers.MaxPooling2D((2, 2)), #池化层2,2*2采样layers.Conv2D(64, (3, 3), activation='relu'), #卷积层3,卷积核3*3layers.Flatten(), #Flatten层,连接卷积层与全连接层layers.Dense(64, activation='relu'), #全连接层,特征进一步提取layers.Dense(10) #输出层,输出预期结果
])model.summary() # 打印网络结构
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d (Conv2D) (None, 30, 30, 32) 896
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 15, 15, 32) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 13, 13, 64) 18496
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 6, 6, 64) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 4, 4, 64) 36928
_________________________________________________________________
flatten (Flatten) (None, 1024) 0
_________________________________________________________________
dense (Dense) (None, 64) 65600
_________________________________________________________________
dense_1 (Dense) (None, 10) 650
=================================================================
Total params: 122,570
Trainable params: 122,570
Non-trainable params: 0
_________________________________________________________________
三、编译模型
model.compile(optimizer='adam',loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])
四、训练模型
history = model.fit(train_images, train_labels, epochs=10, validation_data=(test_images, test_labels))
Epoch 1/10
1563/1563 [==============================] - 9s 4ms/step - loss: 1.7862 - accuracy: 0.3390 - val_loss: 1.2697 - val_accuracy: 0.5406
Epoch 2/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.2270 - accuracy: 0.5595 - val_loss: 1.0731 - val_accuracy: 0.6167
Epoch 3/10
1563/1563 [==============================] - 5s 3ms/step - loss: 1.0355 - accuracy: 0.6337 - val_loss: 0.9678 - val_accuracy: 0.6610
Epoch 4/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.9221 - accuracy: 0.6727 - val_loss: 0.9589 - val_accuracy: 0.6648
Epoch 5/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.8474 - accuracy: 0.7022 - val_loss: 0.8962 - val_accuracy: 0.6853
Epoch 6/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.7814 - accuracy: 0.7292 - val_loss: 0.9124 - val_accuracy: 0.6873
Epoch 7/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.7398 - accuracy: 0.7398 - val_loss: 0.8924 - val_accuracy: 0.6929
Epoch 8/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.7008 - accuracy: 0.7542 - val_loss: 0.9809 - val_accuracy: 0.6854
Epoch 9/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.6474 - accuracy: 0.7732 - val_loss: 0.8549 - val_accuracy: 0.7137
Epoch 10/10
1563/1563 [==============================] - 5s 3ms/step - loss: 0.6041 - accuracy: 0.7889 - val_loss: 0.8909 - val_accuracy: 0.7046
五、预测
通过模型进行预测得到的是每一个类别的概率,数字越大该图片为该类别的可能性越大
plt.imshow(test_images[10])

输出测试集中第一张图片的预测结果
import numpy as nppre = model.predict(test_images)
print(class_names[np.argmax(pre[10])])
313/313 [==============================] - 1s 3ms/step
airplane
六、模型评估
import matplotlib.pyplot as pltplt.plot(history.history['accuracy'], label='accuracy')
plt.plot(history.history['val_accuracy'], label = 'val_accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.ylim([0.5, 1])
plt.legend(loc='lower right')
plt.show()test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

print(test_acc)
0.7166000008583069相关文章:
卷积神经网络(CNN)多种图片分类的实现
文章目录 前期工作1. 设置GPU(如果使用的是CPU可以忽略这步)我的环境: 2. 导入数据3.归一化4.可视化 二、构建CNN网络模型三、编译模型四、训练模型五、预测六、模型评估 前期工作 1. 设置GPU(如果使用的是CPU可以忽略这步&#…...
【备忘录】Docker容器、镜像删除与资源清理命令
文章目录 一,删除容器二,删除镜像三,清理资源 一,删除容器 # 启动时设置 --rm 选项,容器退出时会自动清理内部文件系统 # --rm 不要与 -d 同时使用,或者说同时使用没有意义 docker run --rm #停止所有的容…...
使用 Splashtop 的开放 API 简化 IT 工作流程
我们的工作方式在不断变化,IT 技术人员必须迅速适应时代的变化。越来越多的公司正在转向混合和远程策略,这为那些在服务台或IT技术人员工作的人增加了额外的工作层。对于系统管理员来说,管理一切都可能变得更加复杂。 找到合适的软件来管理多…...
使用requests库进行网络爬虫:IP请求错误的解决方法
目录 引言 一、了解requests库 二、遇到的问题 三、解决方法 1、随机化IP地址 2、减少请求频率 3、使用User Agent模拟浏览器行为 4、使用Cookies 四、注意事项 五、使用代理池 六、总结 引言 在利用Python的requests库进行网络爬虫操作时,我们有时会遇…...
Web之CSS笔记
Web之HTML、CSS、JS 二、CSS(Cascading Style Sheets层叠样式表)CSS与HTML的结合方式CSS选择器CSS基本属性CSS伪类DIVCSS轮廓CSS边框盒子模型CSS定位 Web之HTML笔记 Web之JavaScript(jQuery)笔记 二、CSS(Cascading Style Sheets层叠样式表&…...
CentOS to KeyarchOS 系统迁移体验
1. KOS(KeyarchOS)——云峦操作系统简介 KeyarchOS 即云峦操作系统(简称 KOS)是浪潮信息基于 Linux 内核、龙蜥等开源技术自主研发的一款服务器操作系统,支持x86、ARM 等主流架构处理器,广泛兼容传统 CentOS 生态产品和创新技术产品,可为用户…...
如何从零开始制作一本企业宣传画册?
最近公司领导要求为公司制作一本企业宣传画册,用来展示我们的产品和服务,增加品牌影响力。可是,像我这种零基础的小白,完全不知道如何制作啊?对此我感到很焦虑,怕做不好影响公司形象,也怕耽误时…...
Android问题笔记四十六:解决open failed: EACCES (Permission denied) 问题
点击跳转专栏>Unity3D特效百例点击跳转专栏>案例项目实战源码点击跳转专栏>游戏脚本-辅助自动化点击跳转专栏>Android控件全解手册点击跳转专栏>Scratch编程案例点击跳转>软考全系列点击跳转>蓝桥系列点击跳转>ChatGPT和AIGC 👉关于作者 专…...
Universal adversarial perturbations(2017 CVPR)
Universal adversarial perturbations----《普遍对抗扰动》 通俗UAP算法步骤理解:对于 x i ∈ X {x_i} \in X xi∈X 的每个采样数据点,比较 k ^ ( x i v ) \hat k({x_i} v) k^(xiv) 与 k ^ ( x i ) \hat k({x_i}) k^(xi) ,如果 k…...
前台查看日志功能
前台 <template><div id="logContent"><div class="onlinlog"><div class="left"><div class="number">显示字符数:<span><el-selectv-model="strNumber"placeholder="50000…...
mysqlbinlog使用记录
首先要确认mysql启用了binlog功能。一般默认启用。 mysql> select log_bin; ----------- | log_bin | ----------- | 1 | ----------- 然后确认binlog目录 mysql> select log_bin_basename; ---------------------------- | log_bin_basename | -----…...
学习c#的第十八天
目录 C# 文件的输入与输出 C# I/O 类 FileStream 类 文本文件的读写 StreamReader 类 StreamWriter 类 实例 二进制文件的读写 BinaryReader 类 BinaryWriter 类 实例 Windows 文件系统的操作 DirectoryInfo 类 FileInfo 类 实例 C# 文件的输入与输出 一个 文件…...
element + vue3,级联选择器实现省市区
由于es6支持哈希,所以数据量只要不太大,就不需要对el-cascader进行点击后在调接口出现下一级,很简单的就是直接获取所有数据。 <template><div><el-cascader :modelValue"modelValue" :props"innerProps"…...
程序员的护城河-并发编程
👏作者简介:大家好,我是爱吃芝士的土豆倪,24届校招生Java选手,很高兴认识大家📕系列专栏:Spring源码、JUC源码🔥如果感觉博主的文章还不错的话,请👍三连支持&…...
外卖小程序系统:数字化餐饮的编码之道
在当今数字化时代,外卖小程序系统成为了餐饮业的一项技术巨制。这个系统不仅提供了便捷的点餐体验,更通过先进的技术手段,实现了高效订单处理、实时配送追踪以及个性化推荐。让我们深入了解外卖小程序系统的技术魔法,一起揭秘数字…...
单链表相关面试题--1.删除链表中等于给定值 val 的所有节点
/* 解题思路:从头节点开始进行元素删除,每删除一个元素,需要重新链接节点 */ struct ListNode* removeElements(struct ListNode* head, int val) {if(head NULL)return NULL;struct ListNode* cur head;struct ListNode* prev NULL;while…...
一生一芯18——Chisel模板与Chisel工程构建
Chisel模板链接如下: 链接: https://pan.baidu.com/s/1DNDKpz5VnTxPgoZBBOd-Ww?pwdrevg 提取码: revg Chisel转Verilog模板如下: 链接: https://pan.baidu.com/s/1T9JQL5BccxqI4bscfU-JyA?pwd7rw2 提取码: 7rw2 以下使用sbt作为构建工具 Chisel项目构…...
ES6 class类
基本介绍 1. constructor constructor()方法是类的默认方法,通过new命令生成对象实例时,自动调用该方法。 一个类必须有constructor()方法,如果没有显式定义,一个空的constructor()方法会被默认添加。如: class Po…...
Java的IO流-打印流
打印流 PrintStream public void println()自动换行 PrintWriter package com.itheima.println;import java.io.FileInputStream; import java.io.PrintStream; import java.io.PrintWriter;public class Test2 {public static void main(String[] arg…...
如何使用$APPEALS法,分析用户期待?
$APPEALS分析法是一种用于分析用户期待和需求的方法,它可以帮助企业全方位多角度地了解客户对产品的期望,有助于企业多维度有侧重地调整市场规划和产品改进策略,帮助企业打造优势产品,提高市场竞争力。 下面是使用$APPEALS分析法来…...
label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
聊一聊接口测试的意义有哪些?
目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开,首…...
Map相关知识
数据结构 二叉树 二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子 节点和右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只 有左子节点,有的节点只有…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
Caliper 负载(Workload)详细解析
Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...
windows系统MySQL安装文档
概览:本文讨论了MySQL的安装、使用过程中涉及的解压、配置、初始化、注册服务、启动、修改密码、登录、退出以及卸载等相关内容,为学习者提供全面的操作指导。关键要点包括: 解压 :下载完成后解压压缩包,得到MySQL 8.…...
FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...
【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...
