当前位置: 首页 > news >正文

四旋翼无人机的飞行原理--【其利天下分享】

近年来,无人机在多领域的便捷应用促使其迅猛的发展,如近年来的多场战争,无人机的战场运用发挥得淋漓尽致。

下面我们针对生活中常见的四旋翼无人机的飞行原理做个基础的介绍,以飨各位对无人机有兴趣的朋友。

一:四旋翼无人机的两种结构模型介绍;

一般情况下,根据四旋翼无人机上马达分部的相对位置将四旋翼无人机分为如下两种结构模式

  •  “×”字模式: Pitch和 Roll与1,3、2,4两组电机呈 45°夹角 。
  • “十”字模式: Pitch对应2,4电机的对轴,Roll对应1,3电机的对轴,夹角为0。

一般的无人机基本都采用“X”字模式的结构。“X”型无人机优点是控制灵活,同样是俯仰运动中,“x”型无人机需要控制四个电机;具体表现为,前两个电机转速同时增大(减小),后两个电机转速同时减小(增大)。因为其运动是四个电机转速同时变化,运动(俯仰运动)的合力来源于四个电机(“+”型只有前后两个电机提供力),所以其运动的加速度更快,运动更加灵活。但是同样,控制四个电机使飞行器稳定的难度要大于控制两个电机,所以控制难度高是“X”型无人机一个缺点。鉴于现阶段商业飞控,开源飞控都已经有很成熟的算法控制飞行器稳定飞行,且“X”型飞行器易于悬挂云台,所以市面上的四轴飞行器绝大部分都是“X”型或“H”型,很少看到有“+”型。

“H”型无人机类似于“X”型,这里就不过多赘述了。只讲其一个缺点,“H”型无人机因为物理结构问题,其飞行器的腰部很容易扭折,所以市面上的“H”型无人机都会对腰部进行加固,但是如果操作不当,还是容易损坏。

“+”型的四轴飞行器因为其电机布局和两个姿态角(俯仰角和翻滚角)重合,其控制难度较小。举个例子,“+”型飞行器想要进行俯仰运动时,只需控制前后两个电机的转速,左右电机转速保持不变即可,所以其控制飞行器稳定的难度较小,相对来说易于控制。

二:四旋翼飞行器的6个自由度介绍;

四旋翼飞行器的旋翼结构如图2-2所示。飞行时,以1号电机为机头,3号电机为机尾,2号和4号电机分别位于机身的左、右侧。当飞行器平衡飞行时,电机1和电机3逆时针旋转的同时,电机2和电机4顺时针旋转以抵消电机在高速旋转时产生的陀螺效应和空气动力扭矩效应使飞行器发生自旋。四旋翼飞行器在空间共有6个自由度(分别沿3个坐标轴作平移和旋转动作),对每个自由度的控制我们都可以通过调节不同电机的转速来实现。下面逐个说明飞行器的各种飞行姿态。

(1)垂直运动

图2-2 垂直运动时无人机受力分析图

如上图,1号和3号电机逆时针旋转,2号和4号电机顺时针旋转来平衡其对机身的反扭矩。如果同时增加四个电机的转速(图中各个电机中心引出的向上箭头表示加速,若箭头向下表示减速),每个电机带动螺旋桨产生更大的升力,当合力足以克服整机的重量时,四旋翼飞行器便离地垂直上升;反之,同时减小四个电机转速,四旋翼飞行器则垂直下降,当旋翼产生的升力等于飞行器的自重且无外界干扰时,飞行器便可保持悬停状态。

(2)俯仰运动

如图2-3所示,电机1的转速上升,电机3的转速下降,电机2、电机4的转速保持不变(图中各个电机中心引出的向上箭头表示加速,若箭头向下表示减速,没有箭头表示速度不变)。由于旋翼1的升力上升,旋翼3的升力下降,产生的不平衡力矩使机身绕Y轴旋转(方向如图2-3所示)。同理,当电机1的转速下降,电机3的转速上升时,机身便绕Y轴反方向旋转。实现了飞行器的俯仰运动。

图2-3 俯仰运动时无人机受力分析图

(3)滚转运动

与图2-3的原理相同,在图2-4中,改变电机2和电机4的转速,保持电机1和电机3的转速不变,则可使机身绕X轴旋转(正向和反向),实现飞行器的左右滚转运动。

图2-4 滚转运动时无人机受力分析图

(4)偏航运动

如图2-5所示,四旋翼飞行器偏航运动就是绕自身垂直轴Z轴旋转,可以借助旋翼产生的反扭矩来实现。旋翼转动过程中由于空气阻力作用会形成与转动方向相反的反扭矩。为了克服反扭矩的影响,可使四个旋翼中的两个正转,两个反转,且对角线上的电机转动方向相同。反扭矩的大小与旋翼转速有关,当四个电机转速相同时,四个旋翼产生的反扭矩相互平衡,四旋翼飞行器不发生转动;当四个电机转速不完全相同时,不平衡的反扭矩会引起四旋翼飞行器转动。

在图2-5中,当电机1和电机3的转速上升,电机2和电机4的转速下降时,旋翼1和旋翼3对机身的反扭矩大于旋翼2和旋翼4对机身的反扭矩,机身便在不平衡反扭矩的作用下绕Z轴转动,实现飞行器的偏航运动,转向与电机1、电机3的转向相反。

图2-5 偏航运动时无人机受力分析图

(5)前后运动

如图2-6所示,增加电机3转速,使尾部拉力增大;相应减小电机1转速,使头部拉力减小;同时保持其它两个电机转速不变,反扭矩仍然要保持平衡。按图2-3的理论,飞行器首先发生一定程度的倾斜,从而使旋翼拉力产生水平分量,因此可以实现飞行器的前飞运动(向后飞行与向前飞行正好相反)。当然在图2-3,图2-4中,飞行器在产生俯仰、翻滚运动的同时也会产生沿X、Y轴的水平运动。

图2-6 前后运动时无人机受力分析图

(6)侧向运动

在图2-7中,由于结构对称,所以侧向飞行的工作原理与前后运动完全一样。

相关文章:

四旋翼无人机的飞行原理--【其利天下分享】

近年来,无人机在多领域的便捷应用促使其迅猛的发展,如近年来的多场战争,无人机的战场运用发挥得淋漓尽致。 下面我们针对生活中常见的四旋翼无人机的飞行原理做个基础的介绍,以飨各位对无人机有兴趣的朋友。 一:四旋翼…...

webpack的安全保障是怎么做的?

文章目录 前言Webpack 内容安全策略后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:webpack 🐱‍👓博主在前端领域还有很多知识和技术需要掌握,正在不断努力填补技术短板。(如果出现错误,感…...

Python3.10的一些新特性与使用场景

Python 3.10的新特性不仅增强了语言的功能性,也提供了更丰富的工具,让开发者能更高效、更准确地编写代码。接下来将通过一些实际的使用场景和方法来探索这些新特性。 1. “精确类型”参数化内置集合 Python 3.10引入了更精确的方式来指定内置集合的类型…...

VS2022 配置 OpenCV并开始第一个程序

VS2022安装 首先下载 VisualStudioSetup.exe 下载连接:Visual Studio 2022 IDE - 适用于软件开发人员的编程工具 点击上面的链接即可进入到下载页面。进入到下载页面,可看到有几个版本可选,如下: 我选择的是企业版:E…...

图像处理01 小波变换

一.为什么需要离散小波变换 连续小波分解,通过改变分析窗口大小,在时域上移动窗口和基信号相乘,最后在全时域上整合。通过离散化连续小波分解可以得到伪离散小波分解, 这种离散化带有大量冗余信息且计算成本较高。 小波变换的公…...

构建自定义ChatGPT,微软推出Copilot Studio

11月16日,微软在美国西雅图举办“Microsoft Ignite 2023”全球开发者大会。本次人工智能成为重要主题,微软几乎把所有产品都集成了生成式AI功能并发布了一系列全新产品。 其中,微软重磅推出了Copilot Studio(预览版)&…...

什么是Mock?为什么要使用Mock呢?

1、前言 在日常开发过程中,大家经常都会遇到:新需求来了,但是需要跟第三方接口来对接,第三方服务还没好,我们自己的功能设计如何继续呢?这里,给大家推荐一下Mock方案。 2、场景示例 2.1、场景一…...

elementui表格自定义指令控制显示哪些列可以拖动

Vue.directive(tableBorder, function (el, {value}) {// value允许传字符串数字和数组el.classList.add(z_table_hasBorder)let hasStyle el.querySelector(style)if(hasStyle){hasStyle.remove()}let style document.createElement(style)let str .z_table_hasBorder .el…...

Motion Plan之搜素算法笔记

背景: 16-18年做过一阵子无人驾驶,那时候痴迷于移动规划;然而当时可学习的资料非常少,网上的论文也不算太多。基本就是Darpa的几十篇无人越野几次比赛的文章,基本没有成系统的文章和代码讲解实现。所以对移动规划的认…...

新中新身份证阅读器驱动下载sdk DKQ-A16D

读取操作 int nRet;string sMsg "";IDCardData idcardData new IDCardData();byte[] ctmp new byte[255];ReadCardAPI.Syn_SetPhotoPath(1, ref ctmp);setupDataFormate(1);nRet ReadCardAPI.Syn_OpenPort(Main_Form.m_iPort);if (nRet 0){DateTime startTime …...

世界坐标系,相机坐标系,像素坐标系转换 详细说明(附代码)

几个坐标系介绍,相机内外参的回顾参考此文。 本文主要说明如何在几个坐标系之间转换。 本文涉及: 使用相机内参 在 像素坐标系 和 相机坐标系 之间转换。使用相机外参(位姿)在相机坐标系 和 世界坐标系 之间转换。(qw,qx,qy,qz,…...

计算机毕业设计 基于SpringBoot的企业内部网络管理系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...

CISP模拟试题(三)

免责声明 文章仅做经验分享用途,利用本文章所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任,一旦造成后果请自行承担!!! 1. 人们对信息安全的认识从信息技术安全发展到信息安全保障,主要是由于: A.为了更好地完成组…...

前端调取摄像头并实现拍照功能

前言 最近接到的一个需求十分有意思,设计整体实现了前端仿 微信扫一扫 的功能。整理了一下思路,做一个分享。 tips: 如果想要实现完整扫一扫的功能,你需要掌握一些前置知识,这次我们先讲如何实现拍照并且保存的功能。 一. wind…...

android —— 阴影效果和跑马灯效果Textview

1、带阴影的TextView ①、 android:shadowColor“color/black” 设置阴影颜色,需要与shadowRadius一起使用 ②、android:shadowRadius“3.0” 设置阴影模糊程度,设为0.1会变成字体颜色,建议设置3.0 ③、android:shadowDx“10” 设置阴影在水…...

多态语法详解

多态语法详解 一:概念1:多态实现条件 二:重写:三:向上转型和向下转型1:向上转型:1:直接赋值:2:方法传参3:返回值 2:向下转型 一:概念 1:同一个引…...

Python大数据之linux学习总结——day11_ZooKeeper

ZooKeeper ZK概述 ZooKeeper概念: Zookeeper是一个分布式协调服务的开源框架。本质上是一个分布式的小文件存储系统 ZooKeeper作用: 主要用来解决分布式集群中应用系统的一致性问题。 ZooKeeper结构: 采用树形层次结构,ZooKeeper树中的每个节点被称为—Znode。且树…...

C语言——函数的嵌套调用

#define _CRT_SECURE_NO_WARNINGS 1#include<stdio.h>void new_line() {printf("Hello\n"); }void three_line() {int i0;for(i0;i<3;i){new_line();} }int main() {three_line();return 0; }...

4种经典的限流算法与集群限流

0、基础知识 1000毫秒内&#xff0c;允许2个请求&#xff0c;其他请求全部拒绝。 不拒绝就可能往db打请求&#xff0c;把db干爆~ interval 1000 rate 2&#xff1b; 一、固定窗口限流 固定窗口限流算法&#xff08;Fixed Window Rate Limiting Algorithm&#xff09;是…...

网工内推 | 国企、港企网工,年底双薪,NA以上认证即可

01 中航期货有限公司 招聘岗位&#xff1a;信息技术部-网络工程师 职责描述&#xff1a; 1、负责总部、分支机构、外联单位网络的日常运维、故障和应急处置&#xff0c;特别是定期监测设备的运行状态&#xff0c;对存在隐患的地方及时发现改正&#xff0c;保持网络稳定通畅&am…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间&#xff0c; 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点&#xff0c;不需要开启数据库闪回。…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3

一&#xff0c;概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本&#xff1a;2014.07&#xff1b; Kernel版本&#xff1a;Linux-3.10&#xff1b; 二&#xff0c;Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01)&#xff0c;并让boo…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

Go 并发编程基础:通道(Channel)的使用

在 Go 中&#xff0c;Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式&#xff0c;用于在多个 Goroutine 之间传递数据&#xff0c;从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...