释放锁流程源码剖析
1 释放锁流程概述
ReentrantLock的unlock()方法不区分公平锁还是非公平锁。
-
首先调用unlock()方法。
-
unlock()底层使用的是Sync.release(1)方法
-
public void unlock() {<!-- -->
sync.release(1);
}
release(1)方法会调用tryRelease(1)去尝试解锁。
public final boolean release(int arg) {<!-- -->//尝试释放锁if (tryRelease(arg)) {<!-- -->Node h = head;if (h != null && h.waitStatus != 0)//如果释放锁成功,而且等待队列不为空,且有一个以上的等待线程//因为只有下一个线程才能将前一个线程的waitStatus的状态改为-1,head表示当前执行的线程//当head不为空,且waitStatus !=0说明有等待线程初始化了等待队列,且将持有锁线程的//等待状态改为了-1,必然存在等待线程,将队头的第一个唤醒unparkSuccessor(h);return true;}return false;}
tryRelease(arg)尝试释放锁
@ReservedStackAccessprotected final boolean tryRelease(int releases) {<!-- -->//释放一次锁,就将重入的次数减掉1int c = getState() - releases;if (Thread.currentThread() != getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free = false;//如果锁得状态为1,则表示锁真正被释放了,将持有锁的线程置为nullif (c == 0) {<!-- -->free = true;setExclusiveOwnerThread(null);}//否则,锁依然被持有,因为该锁被持锁线程重入了多次setState(c);return free;}
如果tryRelease()释放锁成功,且判断等待队列确实有阻塞线程,则尝试唤醒
private void unparkSuccessor(Node node) {<!-- -->//如果等待的线程状态<0,SIGNAL,将其设为0int ws = node.waitStatus;if (ws < 0)node.compareAndSetWaitStatus(ws, 0);Node s = node.next;//找一个符合条件,即真正在阻塞睡眠的线程if (s == null || s.waitStatus > 0) {<!-- -->s = null;for (Node p = tail; p != node && p != null; p = p.prev)if (p.waitStatus <= 0)s = p;}//找到后,将其唤醒。有个疑问,头节点不变化嘛???if (s != null)LockSupport.unpark(s.thread);}
回答自己的疑问,为啥没有操作头节点呢?这是因为唤醒阻塞的第一个线程后,它会重新去获取锁,而不是直接将锁分配给它。
final boolean acquireQueued(final Node node, int arg) {<!-- -->boolean interrupted = false;try {<!-- -->for (;;) {<!-- -->final Node p = node.predecessor();if (p == head && tryAcquire(arg)) {<!-- -->setHead(node);p.next = null; // help GCreturn interrupted;}if (shouldParkAfterFailedAcquire(p, node))//从此处被唤醒后,重新进行循环,尝试去争抢锁,如果没抢到,则继续阻塞(非公平的时候)//当刚被唤醒,循环一次,此时p==head,同时如果tryAcquire(1)去获得锁,//如果获得成功将自己设置为head,//如果获得锁失败,则自己再自旋一次(因为在释放锁的时候,head的ws又重置为0了).//如果还是失败,则自己再次park()睡眠interrupted |= parkAndCheckInterrupt();}} catch (Throwable t) {<!-- -->cancelAcquire(node);if (interrupted)selfInterrupt();throw t;}}
2 释放锁源码分析
public void unlock() {
// 释放锁资源不分为公平锁和非公平锁,都是一个sync对象
sync.release(1);
}
// 释放锁的核心流程
public final boolean release(int arg) {
// 核心释放锁资源的操作之一
if (tryRelease(arg)) {
// 如果锁已经释放掉了,走这个逻辑
Node h = head;
// h不为null,说明有排队的(录课时估计脑袋蒙圈圈。)
// 如果h的状态不为0(为-1),说明后面有排队的Node,并且线程已经挂起了。
if (h != null && h.waitStatus != 0)// 唤醒排队的线程
unparkSuccessor(h);
return true;
}
return false;
}
// ReentrantLock释放锁资源操作
protected final boolean tryRelease(int releases) {
// 拿到state - 1(并没有赋值给state)
int c = getState() - releases;
// 判断当前持有锁的线程是否是当前线程,如果不是,直接抛出异常
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
// free,代表当前锁资源是否释放干净了。
boolean free = false;
if (c == 0) {
// 如果state - 1后的值为0,代表释放干净了。
free = true;
// 将持有锁的线程置位null
setExclusiveOwnerThread(null);
}
// 将c设置给state
setState(c);
// 锁资源释放干净返回true,否则返回false
return free;
}
// 唤醒后面排队的Node
private void unparkSuccessor(Node node) {
// 拿到头节点状态
int ws = node.waitStatus;
if (ws < 0)
// 先基于CAS,将节点状态从-1,改为0
compareAndSetWaitStatus(node, ws, 0);
// 拿到头节点的后续节点。
Node s = node.next;
// 如果后续节点为null或者,后续节点的状态为1,代表节点取消了。
if (s == null || s.waitStatus > 0) {
s = null;
// 如果后续节点为null,或者后续节点状态为取消状态,从后往前找到一个有效节点环境
for (Node t = tail; t != null && t != node; t = t.prev)
// 从后往前找到状态小于等于0的节点
// 找到离head最新的有效节点,并赋值给s
if (t.waitStatus <= 0)
s = t;
}
// 只要找到了这个需要被唤醒的节点,执行unpark唤醒
if (s != null)
LockSupport.unpark(s.thread);
}
3 AQS常见的问题
3.1 AQS中为什么要有一个虚拟的head节点
因为AQS提供了ReentrantLock的基本实现,而在ReentrantLock释放锁资源时,需要去考虑是否需要执行unparkSuccessor方法,去唤醒后继节点。
因为Node中存在waitStatus的状态,默认情况下状态为0,如果当前节点的后继节点线程挂起了,那么就将当前节点的状态设置为-1。这个-1状态的出现是为了避免重复唤醒或者释放资源的问题。
因为AQS中排队的Node中的线程如果挂起了,是无法自动唤醒的。需要释放锁或者释放资源后,再被释放的线程去唤醒挂起的线程。 因为唤醒节点需要从整个AQS双向链表中找到离head最近的有效节点去唤醒。而这个找离head最近的Node可能需要遍历整个双向链表。如果AQS中,没有挂起的线程,代表不需要去遍历AQS双向链表去找离head最近的有效节点。为了避免出现不必要的循环链表操作,提供了一个-1的状态。如果只有一个Node进入到AQS中排队,所以发现如果是第一个Node进来,他必须先初始化一个虚拟的head节点作为头,来监控后继节点中是否有挂起的线程。
3. 2 AQS中为什么选择使用双向链表,而不是单向链表
首先AQS中一般是存放没有获取到资源的Node,而在竞争锁资源时,ReentrantLock提供了一个方法,lockInterruptibly方法,也就是线程在竞争锁资源的排队途中,允许中断。中断后会执行cancelAcquire方法,从而将当前节点状态置位1,并且从AQS队列中移除掉。如果采用单向链表,当前节点只能按到后继或者前继节点,这样是无法将前继节点指向后继节点的,需要遍历整个
AQS从头或者从尾去找。单向链表在移除AQS中排队的Node时,成本很高。
当前在唤醒后继节点时,如果是单向链表也会出问题,因为节点插入方式的问题,导致只能单向的去找有效节点去唤醒,从而造成很多次无效的遍历操作,如果是双向链表就可以解决这个问题。
相关文章:
释放锁流程源码剖析
1 释放锁流程概述 ReentrantLock的unlock()方法不区分公平锁还是非公平锁。 首先调用unlock()方法。 unlock()底层使用的是Sync.release(1)方法 public void unlock() {<!-- --> sync.release(1); } release(1)方法会调用tryRelease(1)去尝试解锁。 public fin…...
ComText让机器人有了情节记忆
为了让人类与机器人更好地交流,MIT 计算机科学与人工智能实验室的研究员开发了一个名为 ComText 的程序。这款程序给机器人增加了情节记忆,让它们能够接受更加复杂的命令。目前,他们已经在机器人 Baxter 上测试了程序。 机器人没有情景化的记…...
【Leetcode合集】13. 罗马数字转整数
13. 罗马数字转整数 13. 罗马数字转整数 代码仓库地址: https://github.com/slience-me/Leetcode 个人博客 :https://slienceme.xyz 罗马数字包含以下七种字符: I, V, X, L,C,D 和 M。 字符…...
centos oracle11g开启归档模式
要在 CentOS 上停止 Oracle 11g 数据库,你可以按照以下步骤操作: 1.登录到操作系统 首先,使用具有足够权限的用户登录到 CentOS 操作系统。通常情况下,你需要以具有 oracle 用户权限的用户登录。 使用 SYSDBA 权限连接到数据库…...
【数据结构初阶】双链表
双链表 1.双链表的实现1.1结口实现1.2申请结点1.3初始化双链表1.4打印双链表1.5尾插1.6尾删1.7头插1.8头删1.9计算大小1.10查找1.11pos位置插入1.12删除pos位置1.12删除双链表 全部码源 1.双链表的实现 1.1结口实现 #include<stdio.h> #include<stdlib.h> #inclu…...
Django实战:从零到一构建安全高效的Web应用
目录 一、概述 二、版本控制和部署 1、Git版本控制 2、Docker部署 三、数据库配置 1、配置数据库设置 2、创建数据库模型 四、URL路由和视图 1、定义URL路由 2、创建视图 五、模板渲染 1、创建模板 2、在视图中使用模板 总结 一、概述 Django是一个高级Python W…...
Docker build报错总结,版本过新大避雷!
1.速度太慢报错,需要换源; 在DOCKERFILE中添加镜像; RUN echo "deb http://mirror.sjtu.edu.cn/debian bookworm main non-free contrib" > /etc/apt/sources.list, 2.即使在Dockerfile中换源,但在bul…...
spider 网页爬虫中的 AWS 实例数据获取问题及解决方案
前言 AAWS实例数据对于自动化任务、监控、日志记录和资源管理非常重要。开发人员和运维人员可以通过AWS提供的API和控制台访问和管理这些数据,以便更好地管理和维护他们在AWS云上运行的实例。然而,在使用 spider 框架进行网页爬取时,我们常常…...
flink的window和windowAll的区别
背景 在flink的窗口函数运用中,window和windowAll方法总是会引起混淆,特别是结合上GlobalWindow的组合时,更是如此,本文就来梳理下他们的区别和常见用法 window和windowAll的区别 window是KeyStream数据流的方法,其…...
【机器学习】特征工程:特征选择、数据降维、PCA
各位同学好,今天我和大家分享一下python机器学习中的特征选择和数据降维。内容有: (1)过滤选择;(2)数据降维PCA;(3)sklearn实现 那我们开始吧。 一个数据集中…...
短视频账号矩阵系统saas管理私信回复管理系统
一、短视频矩阵号系统源码开发层面如何来解决? 1.短视频矩阵号系统源码搭建中,首先开发者需要保证api接口的稳定性 ,保证权限应用场景满足官方平台的开发预期。api---待发布、用户管理与授权绑定、私信回复与评论管理等是非常重要的权限接口。…...
利用ETLCloud自动化流程实现业务系统数据快速同步至数仓
现代企业有不少都完成了数字化的转型,而还未转型的企业或商铺也有进行数字化转型的趋势,由此可见,数据已经成为企业决策的重要依据。企业需要先获取数据,将业务系统数据同步至数仓进行整合,然后再进行数据分析。为了更…...
学习c#的第十六天
目录 C# 正则表达式 定义正则表达式 字符转义 字符类 定位点 分组构造 Lookaround 概览 数量词 反向引用构造 替换构造 替代 正则表达式选项 其他构造 Regex 类 代码示例 实例 1 实例 2 实例 3 C# 正则表达式 正则表达式 是一种匹配输入文本的模式。.Net 框…...
【论文阅读笔记】Deep learning for time series classification: a review
【论文阅读笔记】Deep learning for time series classification: a review 摘要 在这篇文章中,作者通过对TSC的最新DNN架构进行实证研究,探讨了深度学习算法在TSC中的当前最新性能。文章提供了对DNNs在TSC的统一分类体系下在各种时间序列领域中的最成功…...
如何将vscode和Linux远程链接:
如何将vscode和Linux远程链接: Remote - SSH - 远程登录Linux 安装Remote - SSH 我们下载完后,就会出现这些图标 这里点一下号 查看一下我们的主机名,并复制 输入ssh 用户名主机名 这里是要将ssh这个文件要放在主机下的哪个路径下ÿ…...
快速傅立叶卷积(FFC)
论文 LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions https://github.com/advimman/lama 1.Introduce 解决图像绘制问题——缺失部分的真实填充——既需要“理解”自然图像的大尺度结构,又需要进行图像合成。 通常的做法是在一个大型自…...
藏头诗(C语言)
本题要求编写一个解密藏头诗的程序。 注:在 2022 年 7 月 14 日 16 点 50 分以后,该题数据修改为 UTF-8 编码。 输入格式: 输入为一首中文藏头诗,一共四句,每句一行。注意:一个汉字占三个字节。 输出格…...
适合您的智能手机的 7 款优秀手机数据恢复软件分享
如今,我们做什么都用手机;从拍照到录音,甚至作为 MP3 播放器,我们已经对手机变得非常依恋。这导致我们在手机上留下了很多珍贵的回忆。 不幸的是,我们有可能会丢失手机上的部分甚至全部数据。幸运的是,这不…...
uniapp APP下载流文件execl 并用WPS打开
使用plus.downloader.createDownload 方法将新建下载任务 HTML5 API Reference export default function plusDownload(config){if(!config){console.error("Argument should not be null");return;}const urlrequest.baseUrlconfig.url;let token uni.getStorage…...
【Python】 Python 操作PDF文档
Python 操作PDF文档 1、PDF (便携式文件格式,Portable Document Format)是由Adobe Systems在1993年用于文件交换所发展出的文件格式。 PDF主要由三项技术组成:衍生自PostScript;字型嵌入系统;资料压缩及传…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
python爬虫——气象数据爬取
一、导入库与全局配置 python 运行 import json import datetime import time import requests from sqlalchemy import create_engine import csv import pandas as pd作用: 引入数据解析、网络请求、时间处理、数据库操作等所需库。requests:发送 …...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
【SpringBoot自动化部署】
SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...
