当前位置: 首页 > news >正文

生产环境_移动目标轨迹压缩应用和算法处理-Douglas-Peucker轨迹压缩算法

场景:

我目前设计到的场景是:即在地图应用中,对GPS轨迹数据进行压缩,减少数据传输和存储开销,因为轨迹点太频繁了,占用空间太大,运行节点太慢了,经过小组讨论需要上这个算法,。

涉及到的算法

  1. Douglas-Peucker算法:该算法通过递归地将轨迹分割为线段,并丢弃那些与整体轨迹偏差较小的线段,从而实现轨迹的压缩。
    1. Visvalingam-Whyatt算法:该算法基于三角形面积的概念,通过不断移除面积最小的点来达到轨迹压缩的目的

                                图片来源:郑宇博士《computing with spatial trajectories》

Haversine公式计算距离和Douglas-Peucker压缩算法代码实现-scala版

import org.apache.spark.sql.{DataFrame, SparkSession}
import org.apache.spark.sql.functions._
import scala.math._// 定义表示点的类
case class Point(lon: Double, lat: Double, time: String, id: String)// Haversine距离计算函数
def haversineDistance(point1: Point, point2: Point): Double = {val R = 6371000.0 // 地球半径(米)val dLat = toRadians(point2.lat - point1.lat)val dLon = toRadians(point2.lon - point1.lon)val a = pow(sin(dLat / 2), 2) + cos(toRadians(point1.lat)) * cos(toRadians(point2.lat)) * pow(sin(dLon / 2), 2)val c = 2 * atan2(sqrt(a), sqrt(1 - a))R * c
}// Douglas-Peucker轨迹压缩函数
def douglasPeucker(points: List[Point], epsilon: Double): List[Point] = {if (points.length < 3) {return points}val dmax = points.view.zipWithIndex.map { case (point, index) =>if (index != 0 && index != points.length - 1) {perpendicularDistance(point, points.head, points.last)} else {0.0}}.maxif (dmax > epsilon) {val index = points.view.zipWithIndex.maxBy { case (point, index) =>if (index != 0 && index != points.length - 1) {perpendicularDistance(point, points.head, points.last)} else {0.0}}._2val recResults1 = douglasPeucker(points.take(index+1), epsilon)val recResults2 = douglasPeucker(points.drop(index), epsilon)recResults1.init ::: recResults2} else {List(points.head, points.last)}
}// 创建Spark会话
val spark = SparkSession.builder().appName("TrajectoryCompression").getOrCreate()// 创建包含lon、lat、time和id列的示例DataFrame
//https://blog.csdn.net/qq_52128187?type=blog,by_laoli
val data = Seq((40.7128, -74.0060, "2023-11-18 08:00:00", "1"),(40.7215, -74.0112, "2023-11-18 08:05:00", "1"),(40.7312, -74.0146, "2023-11-18 08:10:00", "1"),(40.7356, -74.0162, "2023-11-18 08:15:00", "1"),(40.7391, -74.0182, "2023-11-18 08:20:00", "1"),(40.7483, -74.0224, "2023-11-18 08:25:00", "1"),(40.7527, -74.0260, "2023-11-18 08:30:00", "1")
).toDF("lon", "lat", "time", "id")// 为DataFrame添加id列
val dfWithId = data.withColumn("id", monotonically_increasing_id())// 将DataFrame转换为Point列表
val points = dfWithId.as[(Double, Double, String, Long)].collect().map(p => Point(p._1, p._2, p._3, p._4.toString)).toList// 执行轨迹压缩
val compressedPoints = douglasPeucker(points, epsilon = 10)  // 设置您期望的epsilon值// 将压缩后的数据重新转换为DataFrame
import spark.implicits._
val df2 = compressedPoints.toDF("lon", "lat", "time", "id")

参考文章

  • Douglas, D.H., and Peucker, T.K. "Algorithms for the reduction of the number of points required to represent a digitized line or its caricature." The Canadian Cartographer 10.2 (1973): 112-122.
  • Visvalingam, M., and Whyatt, J.D. "Line generalization by repeated elimination of the smallest-area triangle." Cartographic Journal 30.1 (1993): 46-51.
  • 轨迹数据压缩的Douglas-Peucker算法(附代码及原始数据) - 知乎

相关文章:

生产环境_移动目标轨迹压缩应用和算法处理-Douglas-Peucker轨迹压缩算法

场景&#xff1a; 我目前设计到的场景是&#xff1a;即在地图应用中&#xff0c;对GPS轨迹数据进行压缩&#xff0c;减少数据传输和存储开销&#xff0c;因为轨迹点太频繁了&#xff0c;占用空间太大&#xff0c;运行节点太慢了&#xff0c;经过小组讨论需要上这个算法&#x…...

HINSTANCE是什么?

HINSTANCE 就是 HMODULE&#xff1a;...

uniapp小程序定位;解决调试可以,发布不行的问题

遇见这个问题&#xff1b;一般情况就两种 1、域名配置问题&#xff1b; 2、隐私协议问题 当然&#xff0c;如果你的微信小程序定位接口没开启&#xff1b;定位也会有问题&#xff1b; 第一种&#xff0c;小程序一般是腾讯地图&#xff1b;所以一般都会用https://apis.map.qq.co…...

C++学习 --pair

目录 1&#xff0c; 什么是pair 2&#xff0c; 创建pair 2-1&#xff0c; 标准数据类型 2-2&#xff0c; 自定义数据类型 3&#xff0c; 查询元素 3-1&#xff0c; 标准数据类型 3-2&#xff0c; 自定义数据类型 1&#xff0c; 什么是pair 数据以键值对形式存放的容器&…...

Android Frgment中onActivityResult无效的问题

前言 最近在fragment中使用二维码扫描 发现拿不到onActivityResult返回 查了资料说是启动模式 或者是返回值为负数 断点调试 发现根本没走onActivityResult方法 问题 onActivityResult 在附属Activity中被拦截了 所以没有触发该方法 解决 在Fragment所依赖的Activity中执…...

【C#二开业务冠邑】通过界面查看数据来源

前言 重构框架&#xff08;CS【C#】转BS【Java】&#xff09;时&#xff0c;突然发现公司的代码和数据库&#xff0c;有部分都没有写注释&#xff0c;嘎嘎&#xff0c;这不非常影响开发效率&#xff0c;于是乎&#xff0c;开始帮公司整理表结构和数据来源&#xff0c;也从而加…...

使用大语言模型 LLM 做文本分析

本文主要分享 传统聚类算法 LLM与嵌入算法 嵌入算法聚类 LLM的其他用法 聚类是一种无监督机器学习技术&#xff0c;旨在根据相似的数据点的特征将其分组在一起。使用聚类成簇&#xff0c;有助于解决各种问题&#xff0c;例如客户细分、异常检测和文本分类等。尽管传统的聚…...

Windows本地搭建rtmp推流服务

前言 开发时偶尔需要使用rtmp直播流做视频流测试&#xff0c;苦于网上开源的rtmp视频流都已经失效&#xff0c;无奈只好尝试在本地自己搭建一个rtmp的推流服务&#xff0c;方便测试使用。 一、工具准备 Nginx&#xff1a;使用nginx-rtmp-win64推流工具FFmpeg&#xff1a;官方…...

机器学习二元分类 二元交叉熵 二元分类例子

二元交叉熵损失函数 深度学习中的二元分类损失函数通常采用二元交叉熵&#xff08;Binary Cross-Entropy&#xff09;作为损失函数。 二元交叉熵损失函数的基本公式是&#xff1a; L(y, y_pred) -y * log(y_pred) - (1 - y) * log(1 - y_pred)其中&#xff0c;y是真实标签&…...

Postgresql运维信息(一)

1. 运维系统视图 PostgreSQL 提供了一系列系统视图和函数&#xff0c;可以用于获取数据库的运维统计信息。这些信息对于监控和优化数据库性能非常有用。以下是一些常用的 PostgreSQL 运维统计信息&#xff1a; 1.1. pg_stat_activity 这个系统视图包含了当前数据库连接的活动…...

Jupyter Notebook的下载安装与使用教程_Python数据分析与可视化

Jupyter Notebook的下载安装与使用 Jupyter简介下载与安装启动与创建NotebookJupyter基本操作 在计算机编程领域&#xff0c;有一个很强大的工具叫做Jupyter。它不仅是一个集成的开发环境&#xff0c;还是一个交互式文档平台。对于初学者来说&#xff0c;Jupyter提供了友好的界…...

快速入门:构建您的第一个 .NET Aspire 应用程序

##前言 云原生应用程序通常需要连接到各种服务&#xff0c;例如数据库、存储和缓存解决方案、消息传递提供商或其他 Web 服务。.NET Aspire 旨在简化这些类型服务之间的连接和配置。在本快速入门中&#xff0c;您将了解如何创建 .NET Aspire Starter 应用程序模板解决方案。 …...

主流开源大语言模型的微调方法

文章目录 模型ChatGLM2网址原生支持微调方式 ChatGLM3网址原生支持微调方式 Baichuan 2网址原生支持微调方式 Qwen网址原生支持微调方式 框架FireflyEfficient-Tuning-LLMsSuperAdapters 模型 ChatGLM2 网址 https://github.com/thudm/chatglm2-6b 原生支持微调方式 https…...

Django DRF权限组件

在Django的drf框架内的权限组件&#xff0c;如果遇到多个权限认证类&#xff0c;是需要所有的权限类都要通过验证&#xff0c;才能访问视图。 一、简单示例 1、per.py 自定义权限类 from rest_framework.permissions import BasePermission import randomclass MyPerssion(B…...

leetcode每日一题31

搜索旋转排序数组 那……二分法呗 数组中的数可以相同 比 33. 搜索旋转排序数组 多了一个「有重复元素」&#xff0c;导致无法根据 num > nums[0] 来判断 num 在哪一半&#xff0c;比如 [1,1,1,1,1,2,1,1,1] 旋转数组两头相等&#xff0c;元素 1 可能在左半边可能在右半边 …...

使用Pytorch测试cuda设备的性能(单卡或多卡并行)

以下CUDA设备泛指NVIDIA显卡 或 启用ROCm的AMD显卡 测试环境&#xff1a; Distributor ID: UbuntuDescription: Ubuntu 22.04.3 LTSRelease: 22.04Codename: jammy 1.首先&#xff0c;简单使用torch.ones测试CUDA设备 import torch import timedef cuda_benchmark(device_id…...

SpringBoot-AOP-基础到进阶

SpringBoot-AOP AOP基础 学习完spring的事务管理之后&#xff0c;接下来我们进入到AOP的学习。 AOP也是spring框架的第二大核心&#xff0c;我们先来学习AOP的基础。 在AOP基础这个阶段&#xff0c;我们首先介绍一下什么是AOP&#xff0c;再通过一个快速入门程序&#xff0c…...

Midjourney绘画提示词Prompt参考学习教程

一、工具 SparkAi&#xff1a; SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软…...

美国费米实验室SQMS启动“量子车库”计划!30+顶尖机构积极参与

​11月6日&#xff0c;美国能源部费米国家加速器实验室(SQMS)正式启动了名为“量子车库”的全新旗舰量子研究设施。这个6,000平方英尺的实验室是由超导量子材料与系统中心负责设计和建造&#xff0c;旨在联合国内外的科学界、工业领域和初创企业&#xff0c;共同推动量子信息科…...

DCDC同步降压控制器SCT82A30\SCT82630

SCT82A30是一款100V电压模式控制同步降压控制器&#xff0c;具有线路前馈。40ns受控高压侧MOSFET的最小导通时间支持高转换比&#xff0c;实现从48V输入到低压轨的直接降压转换&#xff0c;降低了系统复杂性和解决方案成本。如果需要&#xff0c;在低至6V的输入电压下降期间&am…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展&#xff1a;显示创建时间8. 功能扩展&#xff1a;记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式&#xff1a;数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新&#xff1a;构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议&#xff1a;基于LayerZero协议实现以太坊、Solana等公链资产互通&#xff0c;通过零知…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...