当前位置: 首页 > news >正文

【深度学习】不用Conda在PP飞桨Al Studio三个步骤安装永久PyTorch环境

在 PaddlePaddle AI Studio 中使用 Python 虚拟环境安装 PyTorch

免责声明

在阅读和实践本文提供的内容之前,请注意以下免责声明:

  • 侵权问题: 本文提供的信息仅供学习参考,不用做任何商业用途,如造成侵权,请私信我,我会立即删除,作者不对读者因使用本文所述方法而导致的任何损失或损害负责。

  • 信息准确性: 本文提供的信息可能随时更改,作者不保证文中所述方法在未来的软件更新中仍然有效。

  • 个人风险: 读者在按照本文提供的方法操作时,应该自行承担风险。作者不对读者因使用本文所述方法而导致的任何损失或损害负责。

  • 软件兼容性: 本文中提到的软件版本和兼容性可能会受到变化。读者应该在实施前查看相关软件的官方文档,以确保使用的软件版本相互兼容。

  • 个体差异: 不同的计算机环境、操作系统版本和其他因素可能导致实际操作效果有所不同。读者在实践中可能需要进行适当的调整。

  • 建议备份: 在进行重要操作之前,建议读者备份其数据和设置,以防万一发生意外情况。

  • 社区支持: 读者如果遇到问题,建议参考相关软件的官方社区或论坛,以获取更多帮助。

前言

在深度学习领域,选择适合自己项目需求的框架是至关重要的。PaddlePaddle AI Studio作为一款强大的深度学习开发平台,提供了丰富的硬件支持、模型库、实验管理和团队协作功能。然而,有时我们可能希望结合其他框架的优势,比如PyTorch。本文旨在指导你如何在PaddlePaddle AI Studio中安装PyTorch,以实现深度学习项目的灵活开发。

摘要

本文通过三个主要步骤,详细介绍了在PaddlePaddle AI Studio中安装PyTorch的过程。首先,我们深入了解了AI Studio的基础知识,包括其提供的丰富资源、实验管理功能和团队协作特点。接着,我们重点介绍了准备工作,确保读者能够熟练使用AI Studio的基本功能,并了解为何选择Python虚拟环境进行安装。随后,我们逐步引导读者创建和激活Python虚拟环境,并安装PyTorch框架。最后,考虑到网络条件,我们介绍了手动下载和安装PyTorch和TorchVision的方法。

通过本文的指导,读者将能够在PaddlePaddle AI Studio中顺利安装PyTorch,为深度学习项目的跨框架开发提供了实用的方法。

1. 引言

PaddlePaddle AI Studio 不仅为开发者提供了一体化的深度学习开发平台,还为用户提供了丰富的硬件资源、模型库以及协作工具。在某些情况下,我们可能需要在 AI Studio 中结合其他深度学习框架,比如 PyTorch,以充分发挥其优势。本文将详细指导你通过 Python 虚拟环境在 AI Studio 中安装 PyTorch。

配环境第4章开始,这里2、3介绍基础知识

2. PaddlePaddle AI Studio 基础知识

在使用 AI Studio 之前,让我们更深入地了解这个平台的基础知识:

2.1 什么是 PaddlePaddle AI Studio?

PaddlePaddle AI Studio 是一款由百度推出的深度学习开发平台,它汇聚了许多便于使用和学习的功能:

  • 硬件支持: AI Studio 提供了强大的硬件支持,包括 GPU 加速,以加速深度学习任务。

  • 模型库与预训练模型: AI Studio 内置了丰富的深度学习模型和预训练模型,使用户能够在各种任务上快速启动项目,并支持迁移学习。

  • Notebook 环境: AI Studio 集成了 Jupyter Notebook 环境,为用户提供了一个灵活且交互式的开发平台,适用于多种深度学习框架。

  • 项目协作: AI Studio 支持多人协作,让团队成员能够轻松共享代码、数据和实验记录,促进项目的协同开发。

2.2 AI Studio 的特点

  • 丰富的深度学习资源: 用户可以通过 AI Studio 访问丰富的深度学习资源,包括技术文档、教程和论坛,以便更好地理解和解决问题。

  • 实验管理: AI Studio 提供了实验管理功能,用户可以方便地记录和管理不同实验的代码、参数和结果。

2.3 如何使用 AI Studio

  • 项目创建与管理: 在 AI Studio 中,用户可以轻松创建新项目,添加所需的代码文件、数据和配置,以便更好地组织和管理深度学习任务。

  • Notebook 的使用: AI Studio 的 Notebook 环境支持多种深度学习框架,包括 PaddlePaddle 和 PyTorch。用户可以在云端进行代码编写、实验和模型训练。

2.4 AI Studio 中的实验管理

  • 实验记录: 在 AI Studio 中,实验记录是项目的核心。用户可以记录每次实验的代码、参数设置和结果,从而更好地了解实验的进展和效果。

  • 代码版本控制: AI Studio 提供代码版本控制功能,允许用户管理项目中不同版本的代码。这对于团队协作和追踪代码变更非常有帮助。

  • 参数调优: AI Studio 支持通过实验进行参数调优。用户可以方便地调整不同的参数组合,并记录每次实验的性能指标,以便找到最佳的模型配置。

  • 结果可视化: AI Studio 提供直观的结果可视化工具,使用户能够轻松地查看实验结果、绘制图表,并比较不同实验之间的性能差异。

  • 资源监控: 在进行深度学习实验时,资源的监控是至关重要的。AI Studio 提供了对 GPU 和内存等资源的监控功能,帮助用户更好地了解实验运行的状态和性能。

2.5 AI Studio 中的学习资源

  • 技术文档: AI Studio 提供详细而全面的技术文档,覆盖了平台的各个方面。用户可以在文档中找到使用教程、API 参考和最佳实践指南。

  • 在线社区: AI Studio 的在线社区是用户之间交流的平台。用户可以在论坛上提问、分享经验,并得到来自社区的及时支持。

  • 教程和示例: AI Studio 提供了丰富的教程和示例,涵盖了从入门到高级的各种主题。这些资源有助于用户更好地理解深度学习概念和实践技能。

通过深入了解这些方面,用户可以更全面地利用 PaddlePaddle AI Studio 的功能,从而更加高效地进行深度学习任务的开发和管理。

2.6 AI Studio 中的团队协作

  • 团队项目管理: AI Studio 提供了便捷的团队项目管理功能,团队成员可以共同协作一个项目。这包括共享代码、数据和实验记录,使得整个团队能够更好地协同工作。

  • 权限控制: 为了确保项目的安全性和隐私,AI Studio 允许项目拥有者设置不同团队成员的权限。这样,团队成员只能访问他们所需的项目资源,保障了项目的安全和保密性。

  • 实时协作: 在 AI Studio 的 Notebook 环境中,多人可以实时协作编辑代码。这提高了团队协作的效率,使得成员之间能够更即时地共享思路和解决问题。

2.7 AI Studio 中的模型部署

  • 模型导出与部署: AI Studio 不仅支持模型训练,还提供了简便的模型导出和部署功能。用户可以将训练好的模型轻松导出,并在不同的环境中进行部署,从而应用到实际生产中。

  • 服务化部署: 通过 AI Studio,用户可以将训练好的模型以服务的形式进行部署,实现在线预测。这对于需要实时推理的应用场景非常有用。

2.8 AI Studio 中的学习路径

  • 个性化学习推荐: AI Studio 根据用户的使用和学习历史,提供个性化的学习推荐。这使得用户能够更有针对性地学习新的深度学习技术和最佳实践。

  • 在线培训和课程: AI Studio 还提供在线培训和课程,帮助用户更深入地了解深度学习领域的知识。这些资源有助于用户系统性地提升他们的技能水平。

通过深入了解上述内容,用户可以更好地掌握 PaddlePaddle AI Studio 的强大功能,从而更加高效地开展深度学习项目的各个阶段,包括团队协作、模型部署以及不断的学习与提升。

3. 准备工作

在你着手安装 PyTorch 之前,确保你已经熟悉 PaddlePaddle AI Studio 的基本使用,并理解为什么在这个平台上使用 Python 虚拟环境进行安装是一个明智的选择。以下是更详细的准备工作:

3.1 熟悉基本 AI Studio 操作

确保你能够熟练地使用 AI Studio 的基本功能,包括但不限于:

  • 项目创建: 能够创建新的深度学习项目,并了解如何组织项目结构。

  • 资源管理: 了解如何管理项目中的代码文件、数据集和实验记录。

  • Notebook 环境: 熟悉在 AI Studio 中使用 Jupyter Notebook 进行代码编写和实验的基本操作。

3.2 了解 Python 虚拟环境的优势

在 AI Studio 中安装 PyTorch 时,我们选择使用 Python 虚拟环境。确保你了解以下 Python 虚拟环境的优势:

  • 隔离环境: Python 虚拟环境可以帮助你在项目之间隔离依赖关系,避免不同项目之间的冲突。

  • 版本管理: 能够通过虚拟环境管理 Python 解释器和依赖库的版本,确保项目在不同环境中的一致性。

  • 轻量级: 虚拟环境是轻量级的,不会污染全局 Python 环境,提高了项目的可维护性。

3.3 项目创建和资源管理

在开始安装 PyTorch 之前,确保你已经在 AI Studio 中创建了一个项目,并了解如何有效地管理项目的资源。包括:

  • 代码管理: 了解如何上传、下载和管理项目中的代码文件。

  • 数据集准备: 如果你的项目涉及使用数据集,确保数据集已经上传到 AI Studio,并了解如何在项目中引用这些数据。

  • 实验记录: 熟悉如何记录和管理不同实验的代码、参数和结果。这对于追踪实验进展和比较不同模型配置的性能非常重要。

通过这些准备工作,你将更有信心和效率地进行后续的 PyTorch 安装和实验操作。

4. 创建激活 Python 虚拟环境

使用 Python 的 venv 模块可以轻松地创建虚拟环境。点加号打开 AI Studio 的 终端,执行以下命令:

python -m venv venv

这将在当前目录下创建一个名为 venv 的虚拟环境,我们的torch环境也会一直保持在这个文件夹中

激活虚拟环境。

source venv/bin/activate

5. 安装 PyTorch

在激活的虚拟环境中,使用 pip 安装 PyTorch:

pip install torch

这将下载并安装最新版本的 PyTorch,这里的torch不可以使用gpu,这一步是为了确定当前实例的python和cuda版本

pip list

在这里插入图片描述
这样的就是cu121,我还遇到了cuda117版本的

6. 找到对应torch/torchvision.whl下载后上传安装,pip直接装很慢

cu121
https://download.pytorch.org/whl/cu121
cu117
https://download.pytorch.org/whl/cu117
注意python版本和cuda版本必须保持一致下载linux_x86_64.whl版本的,然后pip直接装
不一定是python310,也不一定是cu121

比如

pip install torch-2.1.1+cu121-cp310-cp310-linux_x86_64.whl
pip install torchvision-0.16.1+cu121-cp310-cp310-linux_x86_64.whl

你一定要pip直接装的话就这样,torch和torchvision版本可与你上面第一次装保持一致

pip install torch==2.1.1+cu121  -f https://download.pytorch.org/whl/torch_stable.html

7. 参考文献

  • PaddlePaddle AI Studio
  • PyTorch 官方文档
  • 半自动化使用.bat手动打包迁移python项目

总结

通过本文的介绍,我们深入了解了PaddlePaddle AI Studio的基础知识,包括其在硬件支持、实验管理和团队协作方面的强大功能。同时,我们提供了在AI Studio中安装PyTorch的详细步骤,帮助读者灵活运用不同深度学习框架的优势。强调了准备工作的重要性,以确保项目的顺利进行。最后,我们还介绍了手动下载和安装PyTorch和TorchVision的方法,以应对网络环境的挑战。

希望本文的内容能够帮助读者更好地利用PaddlePaddle AI Studio的功能,实现高效的深度学习项目开发。

相关文章:

【深度学习】不用Conda在PP飞桨Al Studio三个步骤安装永久PyTorch环境

在 PaddlePaddle AI Studio 中使用 Python 虚拟环境安装 PyTorch 免责声明 在阅读和实践本文提供的内容之前,请注意以下免责声明: 侵权问题: 本文提供的信息仅供学习参考,不用做任何商业用途,如造成侵权,请私信我&am…...

SpringBoot:kaptcha生成验证码

GitHub项目地址:GitHub - penggle/kaptcha: kaptcha - A kaptcha generation engine. kaptcha介绍 kaptcha官网(Google Code Archive - Long-term storage for Google Code Project Hosting.)对其介绍如下, kaptcha十分易于安装…...

C/C++ 使用API实现数据压缩与解压缩

在Windows编程中,经常会遇到需要对数据进行压缩和解压缩的情况,数据压缩是一种常见的优化手段,能够减小数据的存储空间并提高传输效率。Windows提供了这些API函数,本文将深入探讨使用Windows API进行数据压缩与解压缩的过程&#…...

Visual Studio连接unity编辑器_unity基础开发教程

Visual Studio连接unity编辑器 问题描述解决方法意外情况 问题描述 当我们在unity编辑器中打开C#脚本的时候发现Visual Studio没有连接unity编辑器,在编写代码的时候也没有unity关键字的提醒。 简单来说就是敲代码没有代码提示。 解决方法 这时候需要在unity中进行…...

2023亚太杯数学建模B题思路分析 - 玻璃温室中的微气候法规

1 赛题 问题B 玻璃温室中的微气候法规 温室作物的产量受到各种气候因素的影响,包括温度、湿度和风速[1]。其中,适 宜的温度和风速是植物生长[2]的关键。为了调节玻璃温室内的温度、风速等气候因素 , 温室的设计通常采用带有温室风扇的通风系统&#xf…...

轻量封装WebGPU渲染系统示例<37>- 多个局部点光源应用于非金属材质形成的效果(源码)

当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/BasePbrMaterialMultiLights.ts 当前示例运行效果: 此示例基于此渲染系统实现,当前示例TypeScript源码如下: export class BasePbrMaterial…...

设备状态监测与故障诊断系统的作用

随着工业生产的发展和技术的进步,设备状态监测与故障诊断系统在工业领域中扮演着越来越重要的角色。这一系统通过实时监测设备的状态和参数,及时发现潜在的故障,并提供预警信号,以降低生产中断、提高安全性和维护效率。以下将详细…...

浮点数运算精度丢失,如何解决

为什么浮点数运算的时候会有精度丢失的风险? 浮点数运算精度丢失代码演示: float a 2.0f - 1.9f; float b 1.8f - 1.7f; System.out.println(a);// 0.100000024 System.out.println(b);// 0.099999905 System.out.println(a b);// false为什么会出现…...

使用微信小程序openMapApp接口,报错问题解决openMapApp:fail invaild coord

使用微信小程序的 openMapApp 接口时遇到了坐标无效的错误 (openMapApp:fail invalid coord)。这个错误通常是由于提供的地理坐标不符合预期的格式或范围而引起的: 坐标格式: 确保提供的坐标符合正确的格式。常见的格式是 "纬度,经度"&#xf…...

2023亚太杯数学建模思路 - 案例:粒子群算法

文章目录 1 什么是粒子群算法?2 举个例子3 还是一个例子算法流程算法实现建模资料 # 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 什么是粒子群算法? 粒子群算法(Pa…...

【开源】基于JAVA的开放实验室管理系统

项目编号: S 013 ,文末获取源码。 \color{red}{项目编号:S013,文末获取源码。} 项目编号:S013,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容2.1 实验室类型模块2.2 实验室模块2.3 实…...

LeetCode48旋转图像

思路是沿对角线交换元素,之后沿矩阵中线交换元素 参考链接 🔗:【LeetCode 每日一题】48. 旋转图像 | 手写图解版思路 代码讲解-哔哩哔哩】 class Solution {public void rotate(int[][] matrix) {int i0,j0;if(matrixnull){return;}int n matrix.length;// int[]…...

sql手工注入漏洞测试(MYSQL)-墨者-url信息

背景: 自己在墨者官网靶场练习的时候,一直出错,手工容易出错,所以列举一些信息供大家核对,可以参考改动。 数据库版本version() 5.7.22-0ubuntu0.16.04.1 当前数据库名称database() m…...

52.seata分布式事务

目录 1.事务的四大特性。 2.分布式服务的事务问题。 3.seata。 3.1理论基础。 3.1.1CAP定理。 3.1.2BASE理论。 3.2初识Seata。 3.2.1Seata的架构。 3.2.2部署TC服务。 3.2.3微服务集成Seata。 3.3 seata提供的四种分布式事务解决方案。 3.3.1 XA模式。 3.3.1.1 X…...

HTML所有功能大汇总

HTML所有的功能&#xff0c;都在下面的表格中呈现清楚了。千万不要死记硬背&#xff0c;但是在遇到困难的时候&#xff0c;可以按照这个表进行查找。 类别功能HTML标签文本样式粗体<b></b> 或 <strong></strong>斜体<i></i>或<em>&…...

层次分析法--可以帮助你做决策的简单算法

作用 层次分析法是一个多指标的评价算法&#xff0c;主要用来在做决策时&#xff0c;给目标的多个影响因子做权重评分。特别是那些需要主观决策的、或者需要用经验判断的决策方案&#xff0c;例如&#xff1a; 买房子&#xff08;主观决策&#xff09;选择旅游地&#xff08;…...

docker启动链接sqlservr的镜像时报SSl错误

本次部署中遇到了老项目中的 net core 5.0 docker 镜像访问sql server 出现SSL Handshake failed with OpenSSL error - SSL_ERROR_SSL.问题 Microsoft.Data.SqlClient.SqlException (0x80131904): A connection was successfully established with the server, but then an e…...

力扣:175. 组合两个表(Python3)

题目&#xff1a; 表: Person ---------------------- | 列名 | 类型 | ---------------------- | PersonId | int | | FirstName | varchar | | LastName | varchar | ---------------------- personId 是该表的主键&#xff08;具有唯一值的列&#…...

【libGDX】使用Mesh绘制矩形

1 前言 使用Mesh绘制三角形 中介绍了绘制三角形的方法&#xff0c;本文将介绍绘制正方形的方法。 libGDX 以点、线段、三角形为图元&#xff0c;没有提供绘制矩形内部的接口。要绘制矩形内部&#xff0c;必须通过三角形拼接而成&#xff0c;如下图&#xff0c;是通过GL_TRIANGL…...

X2Keyarch迁移工具实战 | 将CentOS高效迁移至浪潮云峦操作系统KeyarchOS

X2Keyarch迁移工具实战 | 将CentOS高效迁移至浪潮云峦操作系统KeyarchOS 1. 搭建仿真线上业务环境2. 安装KeyarchOS操作系统和X2Keyarch迁移工具3. 将CentOS系统业务迁移至KeyarchOS系统 浪潮信息云峦操作系统KeyarchOS基于Linux Kernel、OpenAnolis等开源技术自主研发的一款服…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...