当前位置: 首页 > news >正文

Sentinel架构篇 - 10分钟带你看滑动窗口算法的应用

限流算法

以固定时间窗口算法和滑动时间窗口算法为例,展开两种限流算法的分析。

固定时间窗口算法

在固定的时间窗口内,设置允许固定数量的请求进入。如果超过设定的阈值就拒绝请求或者排队。

具体的,按照时间划分为若干个时间窗口,每个时间窗口里面的设置的请求数量的阈值都是相同的。一旦某个时间窗口内的请求数量达到阈值,就会拒绝新的请求或者进入排队状态。

缺点是无法计算跨相邻时间窗口的请求数量是否达到阈值。

滑动时间窗口算法

在固定时间窗口的基础上,时间窗口的起点和终点不再固定,而是随着时间推移而不断变化,但是每个时间窗口的长度(终点-起点)始终是固定的,也就是说整体会随着时间的推移而不断滑动。

但是每次时间窗口的移动,都需要重新统计请求数量,会有一些重叠区域重复计算的问题,因此可以对时间窗口进行更细粒度的划分,增加一些子时间窗口,即样本窗口。这样对时间窗口内部的请求数量的计算就会变成对相应的样本窗口内部的请求数量的计算,再求和。如果超过阈值,同样会被限流。

源码分析

以 Sentinel 内部的 LeapArray 的 currentWindow 方法为例,解析如何根据指定时间获取对应的样本窗口。

流程概述

1、将指定时间 / 时间窗口的长度(默认500ms),再 % 样本窗口总数量,得到所属的新的样本窗口对应的下标 n。

2、再通过指定时间 - 指定时间 % 时间窗口的长度,得到对应样本窗口的开始时间。

3、从缓存中获取指定下标 n 的旧的样本窗口,如果该样本窗口不存在,则进行创建并返回。

4、比较新样本窗口的开始时间 t1 与旧样本窗口的开始时间 t2,分为三种情况。

  • 如果 t1 = t2,说明新样本窗口与旧样本窗口是相同的,则返回旧样本窗口。
  • 如果 t1 > t2,说明旧样本窗口的状态滞后,则重置旧样本窗口的所有指标,再使用 LongAdder 计算某一指标并进行更新,最后返回更新后的样本窗口。
  • 如果 t1 < t2,说明时间发生了倒流(一般不会发生)则创建新的样本窗口并返回。

LeapArray

public WindowWrap<T> currentWindow(long timeMillis) {if (timeMillis < 0) {return null;}// 计算指定时间所属的样本窗口的下标int idx = calculateTimeIdx(timeMillis);// 计算指定时间所属的样本窗口的起始时间点long windowStart = calculateWindowStart(timeMillis);/** Get bucket item at given time from the array.** (1) Bucket is absent, then just create a new bucket and CAS update to circular array.* (2) Bucket is up-to-date, then just return the bucket.* (3) Bucket is deprecated, then reset current bucket and clean all deprecated buckets.*/while (true) {WindowWrap<T> old = array.get(idx);if (old == null) {/**     B0       B1      B2    NULL      B4* ||_______|_______|_______|_______|_______||___* 200     400     600     800     1000    1200  timestamp*                             ^*                          time=888*            bucket is empty, so create new and update** If the old bucket is absent, then we create a new bucket at {@code windowStart},* then try to update circular array via a CAS operation. Only one thread can* succeed to update, while other threads yield its time slice.*/WindowWrap<T> window = new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));if (array.compareAndSet(idx, null, window)) {return window;} else {Thread.yield();}} else if (windowStart == old.windowStart()) {/**     B0       B1      B2     B3      B4* ||_______|_______|_______|_______|_______||___* 200     400     600     800     1000    1200  timestamp*                             ^*                          time=888*            startTime of Bucket 3: 800, so it's up-to-date** If current {@code windowStart} is equal to the start timestamp of old bucket,* that means the time is within the bucket, so directly return the bucket.*/return old;} else if (windowStart > old.windowStart()) {/**   (old)*             B0       B1      B2    NULL      B4* |_______||_______|_______|_______|_______|_______||___* ...    1200     1400    1600    1800    2000    2200  timestamp*                              ^*                           time=1676*          startTime of Bucket 2: 400, deprecated, should be reset** If the start timestamp of old bucket is behind provided time, that means* the bucket is deprecated. We have to reset the bucket to current {@code windowStart}.* Note that the reset and clean-up operations are hard to be atomic,* so we need a update lock to guarantee the correctness of bucket update.** The update lock is conditional (tiny scope) and will take effect only when* bucket is deprecated, so in most cases it won't lead to performance loss.*/if (updateLock.tryLock()) {try {// 重置所有指标并计算PASS指标return resetWindowTo(old, windowStart);} finally {updateLock.unlock();}} else {Thread.yield();}} else if (windowStart < old.windowStart()) {// 注意:一般不会出现该情况,该情况属于时间倒流return new WindowWrap<T>(windowLengthInMs, windowStart, newEmptyBucket(timeMillis));}}
}

calculateTimeIdx

private int calculateTimeIdx(/*@Valid*/ long timeMillis) {// windowLengthInMs默认是500long timeId = timeMillis / windowLengthInMs;// array数组的长度默认是2return (int)(timeId % array.length());
}

计算指定时间所属的样本窗口的下标。

calculateWindowStart

protected long calculateWindowStart(/*@Valid*/ long timeMillis) {return timeMillis - timeMillis % windowLengthInMs;
}

计算指定时间所属的样本窗口的开始时间。

resetWindowTo

以 OccupiableBucketLeapArray 为例。

@Override
protected WindowWrap<MetricBucket> resetWindowTo(WindowWrap<MetricBucket> w, long time) {// 将windowStart设置为指定时间,即样本窗口的开始时间w.resetTo(time);// 获取样本窗口的统计数据MetricBucket borrowBucket = borrowArray.getWindowValue(time);if (borrowBucket != null) {// 重置所有指标w.value().reset();// 计算PASS指标w.value().addPass((int)borrowBucket.pass());} else {// 重置所有指标w.value().reset();}return w;
}

MetricBucket#reset

public MetricBucket reset() {for (MetricEvent event : MetricEvent.values()) {// 重置所有指标counters[event.ordinal()].reset();}// 初始化minRt属性initMinRt();return this;
}

MetricEvent 是一个枚举类,包括:PASS, BLOCK, EXCEPTION, SUCCESS, RT, OCCUPIED_PASS。

MetricBucket#initMinRt

private void initMinRt() {// 获取 csp.sentinel.statistic.max.rt 属性值(默认 5000),并初始化minRt属性this.minRt = SentinelConfig.statisticMaxRt();
}

MetricBucket#addPass

public void addPass(int n) {// 计算PASS指标add(MetricEvent.PASS, n);
}public MetricBucket add(MetricEvent event, long n) {// 底层使用LongAdder计算指标counters[event.ordinal()].add(n);return this;
}

相关文章:

Sentinel架构篇 - 10分钟带你看滑动窗口算法的应用

限流算法 以固定时间窗口算法和滑动时间窗口算法为例&#xff0c;展开两种限流算法的分析。 固定时间窗口算法 在固定的时间窗口内&#xff0c;设置允许固定数量的请求进入。如果超过设定的阈值就拒绝请求或者排队。 具体的&#xff0c;按照时间划分为若干个时间窗口&#…...

redis主从复制

<1> redis主从复制介绍&#xff1a; 首先来介绍一下什么是redis主从复制 Redis是一个使用ANSI C编写的开源、支持网络、基于内存、可选持久性的键值对存储数据库。但如果当把数据存储在单个Redis的实例中&#xff0c;当读写体量比较大的时候&#xff0c;服务端就很难承受…...

近期常见组件漏洞更新:

&#xff08;1&#xff09;mysql 5.7 在2023年1月17日&#xff0c;发布了到5.7.41版本 mysql 8.0 在2023年1月17日&#xff0c;发布了到8.0.32版本 MySQL :: Download MySQL Community Serverhttps://dev.mysql.com/downloads/mysql/ &#xff08;2&#xff09;Tomcat8在202…...

深度学习常用的激活函数总结

各种激活函数总结 目录一、sigmoid二、tanh![在这里插入图片描述](https://img-blog.csdnimg.cn/a0d92552edf8464db793fdd2f2b75cb5.png)三、ReLU系列1.原始ReLU2.ReLU改进&#xff1a;Leaky ReLU四、swish五、GeLU一、sigmoid 优点&#xff1a; 1.可以将任意范围的输出映射到 …...

Java编程问题top100---基础语法系列(二)

Java编程问题top100---基础语法系列&#xff08;二&#xff09;六、如何测试一个数组是否包含指定的值&#xff1f;简单且优雅的方法:自己动手写逻辑对象数组JDK 8 APIJDK 9 API Set.of()七、重写&#xff08;Override&#xff09;equlas和hashCode方法时应考虑的问题理论上讲&…...

网页打印与导出word实现在A4纸上相同效果

在工作中遇到这样一个需求&#xff0c;客户要求&#xff1a; 1、实现在浏览器中打印和导出到word中&#xff0c;要求浏览器打印出来的效果和word中打印的效果基本一致。2、打印的内容要自动分页&#xff0c;第一页的顶部有文件头&#xff0c;最后一页的底部有页尾。 这里记录一…...

备战英语6级——记录复习进度

开始记录—— 学习&#xff1a;如何记录笔记&#xff1f; 1&#xff1a;首先我认为&#xff1a;电脑打字比较适合我&#xff01; 2&#xff1a;先记笔记&#xff0c;再“填笔记”&#xff01; 记笔记就是一个框架&#xff0c;记录一个大概的东西。后面需要在笔记中&#xff0…...

实例10:四足机器人运动学逆解可视化与实践

实例10&#xff1a; 四足机器人运动学逆解单腿可视化 实验目的 了解逆运动学的有无解、有无多解情况。了解运动学逆解的求解。熟悉逆运动学中求解的几何法和代数法。熟悉单腿舵机的简单校准。掌握可视化逆向运动学计算结果的方法。 实验要求 拼装一条mini pupper的腿部。运…...

Elasticsearch7.8.0版本优化——路由选择

目录一、Elasticsearch 如何知道一个文档存放在哪个分片二、不带 routing 查询三、带 routing 查询一、Elasticsearch 如何知道一个文档存放在哪个分片 其实是通过这个公式来计算出来&#xff1a;shard hash(routing) % number_of_primary_shardsrouting 默认值是文档的 id&a…...

Go常量的定义和使用const,const特性“隐式重复前一个表达式”,以及iota枚举常量的使用

Go常量的定义和使用const,以及iota枚举常量的使用Go常量constGo中常量的定义和使用Go特性const,"隐式重复前一个表达式"iota 实现枚举常量Go常量const Go语言中的const整合了C语言中的宏定义常量&#xff0c;const只读变量枚举变量 绝大多数情况下&#xff0c;Go常…...

Git学习(1)pro git阅读

目录 目录&#xff1a; 1. 起步 2. Git 基础 3. Git 分支 4. 服务器上的 Git 5. 分布式 Git 第一章 1.3 Git是什么 1.6运行git前的配置 该开源图书网站 Git - Book (git-scm.com) 目录&#xff1a; 1. 起步 1.1 关于版本控制1.2 Git 简史1.3 Git 是什么&#xff1f;1…...

PHY自协商

1. 自协商定义 自动协商模式是端口根据另一端设备的连接速度和双工模式&#xff0c;自动把它的速度调节到最高的公共水平&#xff0c;即线路两端能具有的最快速度和双工模式。 自协商功能允许一个网络设备能够将自己所支持的工作模式信息传达给网络上的对端&#xff0c;并接受对…...

【大数据离线开发】8.2 Hive的安装和配置

8.3 Hive的安装和配置 安装模式&#xff1a; 嵌入模式 &#xff1a;不需要使用MySQL&#xff0c;需要Hive自带的一个关系型数据库&#xff1a;Derby本地模式、远程模式 ----> 需要MySQL数据库的支持 安装 hive 安装包 1、解压tar -zxvf apache-hive-2.3.0-bin.tar.gz -C…...

Capture Modules:车载网络报文捕获模块

&#xff08;以下所有图片均来源于Technica官网&#xff09; Technica Engineering的新一代硬件设备&#xff0c;即Capture Modules&#xff0c;提供了五种变体以涵盖不同带宽的车载以太网&#xff08;100BASE-T1和1000BASE-T1&#xff09;以及常见的IVN技术&#xff08;CAN、C…...

数据结构与算法系列之时间与空间复杂度

这里写目录标题算法的复杂度大O的渐进表示法实例分析空间复杂度每日一题算法的复杂度 衡量一个算法的好坏&#xff0c;一般 是从时间和空间两个维度来衡量的&#xff0c; 即时间复杂度和空间复杂度。 时间复杂度主要衡量一个算法的运行快慢&#xff0c; 空间复杂度主要衡量一个…...

Python代码使用PyQt5制作界面并封装

目录参考链接续&#xff1a;https://blog.csdn.net/yulinxx/article/details/93344163 若要对此程序进行封装&#xff0c;加个界面&#xff0c;然后制作成 EXE&#xff0c; 使用 PyQt5 制作界面&#xff0c;PyInstaller 进行封装成 EXE 可参考&#xff1a; Python制作小软件…...

【Node.js】MySQL数据库的第三方模块(mysql)

mysql安装操作MySQL数据库的第三方模块&#xff08;mysql&#xff09;通过第三方模块&#xff08;mysql2&#xff09;连接到MySQL数据库mysql插入数据mysql插入数据的便捷方式mysql更新数据mysql更新数据的便捷方式mysql删除数据安装操作MySQL数据库的第三方模块&#xff08;my…...

Docker中安装并配置单机版redis

1、使用docker安装redis 搜索Reis镜像&#xff0c;这里展示的是官方最新的镜像docker search redis 使用官方dockerhub搜索redis 2、选用常用的redis5.0作为安装的版本docker pull redis:5.0 3、运行redis容器的两种方式 3.1 不映射外部配置文件直接运行redis5.0镜像docker …...

模拟微信聊天-课后程序(JAVA基础案例教程-黑马程序员编著-第八章-课后作业)

【案例9-1】 模拟微信聊天 【案例介绍】 1.案例描述 在如今&#xff0c;微信聊天已经人们生活中必不可少的重要组成部分&#xff0c;人们的交流很多都是通过微信来进行的。本案例要求&#xff1a;将多线程与UDP通信相关知识结合&#xff0c;模拟实现微信聊天小程序。通过监…...

html2canvas将页面dom元素内容渲染成图片保存至本地

html2canvas:https://html2canvas.hertzen.com/configuration/ github:https://github.com/niklasvh/html2canvas 效果 代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compa…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

Pinocchio 库详解及其在足式机器人上的应用

Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库&#xff0c;专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性&#xff0c;并提供了一个通用的框架&…...

4. TypeScript 类型推断与类型组合

一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式&#xff0c;自动确定它们的类型。 这一特性减少了显式类型注解的需要&#xff0c;在保持类型安全的同时简化了代码。通过分析上下文和初始值&#xff0c;TypeSc…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

Leetcode33( 搜索旋转排序数组)

题目表述 整数数组 nums 按升序排列&#xff0c;数组中的值 互不相同 。 在传递给函数之前&#xff0c;nums 在预先未知的某个下标 k&#xff08;0 < k < nums.length&#xff09;上进行了 旋转&#xff0c;使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

Unity中的transform.up

2025年6月8日&#xff0c;周日下午 在Unity中&#xff0c;transform.up是Transform组件的一个属性&#xff0c;表示游戏对象在世界空间中的“上”方向&#xff08;Y轴正方向&#xff09;&#xff0c;且会随对象旋转动态变化。以下是关键点解析&#xff1a; 基本定义 transfor…...