python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny)
python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny)
这次实验,我们分别使用opencv 的 sobel算子、沙尔算子、拉普拉斯算子三种算子取进行边缘检测,然后后面又使用了Canny算法进行边缘检测。
直接看代码,代码比较简单,不是很复杂:
注:cv2.convertScaleAbs进行了一个绝对值操作,因为可能计算出来梯度为负值。
from ctypes.wintypes import SIZE
from multiprocessing.pool import IMapUnorderedIterator
import cv2
import copy
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import ospath=r'ls.jpg'img=cv2.imread(path,1)
img_gray=cv2.imread(path,0)def cv_show(name,img):cv2.imshow(name,img)#cv2.waitKey(0),接收0,表示窗口暂停cv2.waitKey(0)#销毁所有窗口cv2.destroyAllWindows()#cv_show('img_gray',img_gray)#Sobel算子img_sobel_x=cv2.Sobel(img,cv2.CV_64F,1,0,ksize=3)#1,0 表示选择水平还是竖直放心计算梯度img_sobel_y=cv2.Sobel(img,cv2.CV_64F,0,1,ksize=3)#1,0 表示选择水平还是竖直放心计算梯度sobel_img_x_abs=cv2.convertScaleAbs(img_sobel_x)
img_sobel_y_abs=cv2.convertScaleAbs(img_sobel_y)img_sobel_xy_abs=cv2.addWeighted(sobel_img_x_abs,0.5,img_sobel_y_abs,0.5,0)
plt.subplot(231)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img_sobel_x[:,:,::-1])
plt.title('img_sobel_x')plt.subplot(232)
plt.imshow(sobel_img_x_abs[:,:,::-1])
plt.title('sobel_img_x_abs')
plt.subplot(233)#result=BGR_TO_RGB(result)
plt.imshow( img[:,:,::-1])
plt.title('img')plt.subplot(234)#result=BGR_TO_RGB(result)
plt.imshow( img_sobel_y[:,:,::-1])
plt.title('img_sobel_y')plt.subplot(235)#result=BGR_TO_RGB(result)
plt.imshow( img_sobel_y_abs[:,:,::-1])
plt.title('img_sobel_y_abs')plt.subplot(236)#result=BGR_TO_RGB(result)
plt.imshow( img_sobel_xy_abs[:,:,::-1])
plt.title('img_sobel_xy_abs')
plt.show()#沙尔算子scharrx=cv2.Scharr(img,cv2.CV_64F,dx=1,dy=0)scharry=cv2.Scharr(img,cv2.CV_64F,dx=0,dy=1)scharry_img_x_abs=cv2.convertScaleAbs(scharrx)scharry_img_y_abs=cv2.convertScaleAbs(scharry)img_scharry_xy_abs=cv2.addWeighted(scharry_img_x_abs,0.5,scharry_img_y_abs,0.5,0)
#拉普拉斯算子
lap_img=cv2.Laplacian(img,cv2.CV_64F)
lap_img_abs=cv2.convertScaleAbs(lap_img)
plt.subplot(121)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(scharry_img_y_abs[:,:,::-1])
plt.title('scharry_img_y_abs')plt.subplot(122)
plt.imshow(lap_img_abs[:,:,::-1])
plt.title('lap_img_abs')
plt.show()#result=BGR_TO_RGB(rpath=r'D:\learn\photo\cv\lena.jpg'img=cv2.imread(path,0)
img_canny1=cv2.Canny(img,80,150)
img_canny2=cv2.Canny(img,50,150)
plt.subplot(131)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img,'gray')
plt.title('img')
plt.subplot(132)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img_canny1,'gray')
plt.title('img_canny1')plt.subplot(133)
plt.imshow(img_canny2,'gray')
plt.title('img_canny2')
plt.show()os.system("pause")



相关文章:
python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny)
python opencv 边缘检测(sobel、沙尔算子、拉普拉斯算子、Canny) 这次实验,我们分别使用opencv 的 sobel算子、沙尔算子、拉普拉斯算子三种算子取进行边缘检测,然后后面又使用了Canny算法进行边缘检测。 直接看代码,代…...
【Unity入门】鼠标输入和键盘输入
Unity的Input类提供了许多监听用户输入的方法,比如我们常见的鼠标,键盘,手柄等。我们可以用Input类的接口来获取用户的输入信息 一、监听鼠标输入 GetMouseButtonUp 、GetMouseButtonDown、GetMouseButton input.GetMouseButtonDown和 inp…...
芯知识 | MP3语音芯片IC的优势特征及其在现代科技应用中的价值
随着科技的飞速发展,MP3语音芯片作为一种高度集成的音频处理解决方案,在现代电子产品中发挥着越来越重要的作用。本文将分析MP3语音芯片的优势特征,并探讨其在各个领域的应用价值。 一、MP3语音芯片的优势特征 MP3语音芯片具有多种显著的优…...
C语言进阶之路-基本数据小怪篇
目录 一、学习目标: 二、数据基本类型 整型 浮点型 / 实型 字符 字符串 布尔型数据 三、重要的杂七杂八知识点 常量与变量 标准输入 sizeof运算符: 类型转换 数据类型的本质 整型数据尺寸 可移植性整型 拿下第一个C语言程序 总结 一、学…...
【OpenCV实现图像:使用OpenCV生成拼图效果】
文章目录 概要通用配置不考虑间隔代码实现考虑间隔代码实现小结 概要 概要: 拼图效果是一种将图像切割为相邻正方形并重新排列的艺术效果。在生成拼图效果时,可以考虑不同的模式,包括是否考虑间隔和如何处理不能整除的部分。 不考虑间隔&a…...
【AOSP】生成签名文件release key,通过Android源码对apk进行签名
简介 现在apk都需要签名,Flutter做的项目官方规定编译apk必须签名。 签名的好处: 应用来源验证: 应用签名允许Android系统验证应用的来源。每个应用都使用开发者的私钥进行签名,而应用的签名信息包含在应用的APK文件中。当用户尝…...
深度学习之基于Tensorflow银行卡号码识别系统
欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介银行卡号码识别的步骤TensorFlow的优势 二、功能三、系统四. 总结 一项目简介 # 深度学习基于TensorFlow的银行卡号码识别介绍 深度学习在图像识别领域取得…...
第95步 深度学习图像目标检测:Faster R-CNN建模
基于WIN10的64位系统演示 一、写在前面 本期开始,我们学习深度学习图像目标检测系列。 深度学习图像目标检测是计算机视觉领域的一个重要子领域,它的核心目标是利用深度学习模型来识别并定位图像中的特定目标。这些目标可以是物体、人、动物或其他可识…...
设计模式—里氏替换原则
1.概念 里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。 里氏代换原则中说,任何基类可以出现的地方,子类一定可以出现。 LSP是继承复用的基石,只有当衍生类可以替换掉基类,软件单位的功能不受到影…...
PyTorch包
进入PyTorch的官网: pytorch GitHub 点击GitHub: 进入PyTorch的主目录: 进入Vision reference: detection: 这就是我们在训练过程中会使用到的文件了:...
22、什么是中间件和权限拦截中间件实操
新建中间件 middleware\auth.js // 定义权限判断中间件,中间件的第一个参数是context export default ({store, redirect}) > {console.log("中间件被调用")// if (!store || !store.state.userinfo) {// redirect("/")// } }页面使用…...
vue.config.js
proxy代理 proxy选项用于配置开发服务器的代理。下面是proxy的全部属性: 1. target (String | Object | Function): 指定要代理的目标主机的URL。可以是一个字符串,也可以是一个对象或函数,用于动态返回目标URL。 2. forward (Boolean): 控…...
80C51单片机----数据传送类指令
目录 一.一般传送指令,即mov指令 1.16位传送(仅1条) 2.8位传送 (1)目的字节为A(累加器) (2)目的字节为Rn(工作寄存器) (3)目的字节为direct…...
【Golang】使用泛型对数组进行去重
背景: 要求写一个方法,返回去重后的数组。数组的类型可能是int64,也可能是string,或是其他类型。 如果区分类型的话,每增加一个新的类型都需要重新写一个方法。 示例代码: //对int64数组进行去重 func DeD…...
Ps:画笔工具的基本操作
画笔工具 Brush Tool是 Ps 中最常用的工具,广泛地用于绘画与修饰工作。 虽然多数操作可在画笔工具的工具选项栏中选择执行,但是如果能记住相应的快捷键可大大提高工作效率。 熟练掌握画笔工具的操作对于使用其他工具也非常有益,因为 Ps 中许多…...
【Apache Doris】一键实现万表MySQL整库同步 | 快速体验
【Apache Doris】一键实现万表MySQL整库同步 | 快速体验) 一、 环境信息1.1 硬件信息1.2 软件信息 二、 流程介绍三、 前提概要3.1 安装部署3.2 JAR包准备3.2.1 数据源3.2.2 目标源 3.3 脚本模版 四、快速体验五、常见问题5.1 Mysql通信异常5.2 MySQL无Key同步异常5…...
35.逻辑运算符
目录 一.什么是逻辑运算符 二.C语言中的逻辑运算符 三.逻辑表达式 三.视频教程 一.什么是逻辑运算符 同时对俩个或者俩个以上的表达式进行判断的运算符叫做逻辑运算符。 举例:比如去网吧上网,只有年满十八周岁并且带身份证才可以上网。在C语言中如果…...
ASP.NET Core 启用CORS
浏览器的安全阻止一个域的本地页面请求另外不同域的本地页面,这个限制叫同源策略,这个安全特性用来阻止恶意站点从别的网站读取数据 例如假如我有一个页面叫A.html https://foo.example/A.html 现在页面A.html有一个ajax代码尝试读取B.html的HTML的源…...
io.lettuce.core.RedisCommandExecutionException
io.lettuce.core.RedisCommandExecutionException: ERR invalid password ERR invalid password-CSDN博客 io.lettuce.core.RedisCommandExecutionException /** Copyright 2011-2022 the original author or authors.** Licensed under the Apache License, Version 2.0 (the…...
vue3 导出数据为 excel 文件
文章目录 安装插件封装组件 -- Export2Excel.js多表封装界面使用 -- 数据处理成二维数组更多 菜鸟最近做了一个需求,就是需要上传表单并识别,然后识别出来的内容要可以修改,然后想的就是识别内容变成 form 表单,所以并没有使用 Sp…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...
网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
Spring数据访问模块设计
前面我们已经完成了IoC和web模块的设计,聪明的码友立马就知道了,该到数据访问模块了,要不就这俩玩个6啊,查库势在必行,至此,它来了。 一、核心设计理念 1、痛点在哪 应用离不开数据(数据库、No…...
鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南
1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发,使用DevEco Studio作为开发工具,采用Java语言实现,包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...
