当前位置: 首页 > news >正文

【GridSearch】 简单实现并记录运行效果

记录了使用for循环实现网格搜索的简单框架。
使用df_search记录每种超参数组合下的运行结果。
lgb_model.best_score返回模型的最佳得分
lgb_model.best_iteration_返回模型的最佳iteration也就是最佳n_extimator

import numpy as np
import pandas as pd
import lightgbm as lgbdf = pd.read_csv("this_is_train.csv")
df_search_columns = ['learning_rate', 'num_leaves', 'max_depth','subsample','colsample_bytree','best_iteration','best_score']
df_search =  pd.DataFrame(columns=df_search_columns )
# colsample_bytree :0.9, learning_rate : 0.001
lgb_params = {"objective": "mae", # "mae""n_estimators": 6000,"num_leaves": 256, # 256"subsample": 0.6,"colsample_bytree": 0.8,"learning_rate": 0.00571, # 0.00871'max_depth': 11, # 11"n_jobs": 4,"device": "gpu","verbosity": -1,"importance_type": "gain",
}
for learning_rate in [0.001,0.005,0.01,0.015,0.05]:for num_leaves in [300,256,200,150]:for max_depth in [15,13,11,9,7]:for subsample in [0.8,0.6,0.5]:for colsample_bytree in [0.9,0.8,0.7]:print(f"learning_rate : {learning_rate}, num_leaves : {num_leaves}, max_depth:{max_depth}, subsample : {subsample}, colsample_bytree : {colsample_bytree}")lgb_params['learning_rate'] = learning_ratelgb_params['num_leaves'] = num_leaveslgb_params['max_depth'] = max_depthlgb_params['subsample'] = subsamplelgb_params['colsample_bytree'] = colsample_bytree# Train a LightGBM model for the current foldlgb_model = lgb.LGBMRegressor(**lgb_params)lgb_model.fit(train_feats,train_target,eval_set=[(valid_feats, valid_target)],callbacks=[lgb.callback.early_stopping(stopping_rounds=100),lgb.callback.log_evaluation(period=100),],)best_iteration = lgb_model.best_iteration_best_score = lgb_model.best_score_cache = pd.DataFrame([[learning_rate,num_leaves,max_depth,subsample,colsample_bytree,best_iteration,best_score]],columns=['learning_rate', 'num_leaves', 'max_depth','subsample','colsample_bytree','best_iteration','best_score'])df_search = pd.concat([df_search, cache], ignore_index=True, axis=0)
df_search.to_csv('grid_search.csv',index=False)

使用该框架,需要调整训练数据df部分,以及进行网格的备选数据和lightgbm的超参数。
每次运行的数据通过一下代码进行记录

cache = pd.DataFrame([[learning_rate,num_leaves,max_depth,subsample,colsample_bytree,best_iteration,best_score]],\columns=df_search_columns )
df_search = pd.concat([df_search, cache], ignore_index=True, axis=0)

相关文章:

【GridSearch】 简单实现并记录运行效果

记录了使用for循环实现网格搜索的简单框架。 使用df_search记录每种超参数组合下的运行结果。 lgb_model.best_score返回模型的最佳得分 lgb_model.best_iteration_返回模型的最佳iteration也就是最佳n_extimator import numpy as np import pandas as pd import lightgbm as …...

SecureCRT出现Key exchange failed.No compatible key exchange method. 错误解决方法

SecureCRT出现Key exchange failed.No compatible key exchange method. 如下 Key exchange failed. No compatible key exchange method. The server supports these methods: curve25519-sha256,curve25519-sha256libssh.org,diffie-hellman-group-exchange-sha256解决方法&…...

Android RGB转YUV的算法

将 ARGB(Alpha-Red-Green-Blue)颜色空间转换为 YUV(亮度-色度)颜色空间的常用算法有以下几种: 矩阵转换法 使用预定义的转换矩阵将 RGB 值转换为 YUV 值。其中,Y 表示亮度,U 和 V 表示色度。这…...

Spring事务底层原理(待完善)

EnableTransactionManagement 我们经常使用EnableTransactionManagement开启事务, 这个注解导入一个类,Import(TransactionManagementConfigurationSelector.class), 会在spring容器增加两个bean, AutoProxyRegistrar和ProxyTransactionManagementConfiguration. AutoProxyRe…...

微信小程序 修改默认单选,多选按钮样式

微信小程序 修改默认单选&#xff0c;多选按钮样式 1.在微信开发者文档中复制一份单选或者多选的代码 <!--pages/index3/index.wxml--> <radio-group bindchange"radioChange"><label class"weui-cell weui-check__label" style"dis…...

「最优化基础知识2」一维搜索,以及python代码

最优化基础知识&#xff08;2&#xff09; 无约束优化问题&#xff0c;一维搜索 一、一维搜索 一维搜索的意思是在一个方向上找到最小点。 用数学语言描述&#xff0c;X*Xk tPk&#xff0c;从Xk沿着Pk方向行走t到达最小点X*。 1、收敛速度&#xff1a; 线性收敛&#xff1…...

工厂模式之抽象工厂模式(常用)

抽象工厂模式 工厂方法模式中考虑的是一类产品的生产&#xff0c;如畜牧场只养动物、电视机厂只生产电视机、计算机软件学院只培养计算机软件专业的学生等。 同种类称为同等级&#xff0c;也就是说&#xff1a;工厂方法模式中只考虑生产同等级的产品&#xff0c;但是在现实生…...

Apache服务Rwrite功能使用

Rewrite也称为规则重写&#xff0c;主要功能是实现浏览器访问时&#xff0c;URL的跳转。其正则表达式是基于Perl语言。要使用rewrite功能&#xff0c;Apache服务器需要添加rewrite模块。如果使用源码编译安装&#xff0c;–enable-rewrite。有了rewrite模块后&#xff0c;需要在…...

【一起来学kubernetes】6、kubernetes基本概念区分

前言 前一篇文章我们对k8s中的一些常见概念进行了一个梳理&#xff0c;接下来我们将常见一些概念的区别和联系进行一个理解 service和deployment的区别和联系 在Kubernetes中&#xff0c;Service和Deployment是两个不同的概念&#xff0c;它们之间存在一定的关联。 Deployme…...

Python基础入门例程66-NP66 增加元组的长度(元组)

最近的博文: Python基础入门例程65-NP65 名单中出现过的人(元组)-CSDN博客 Python基础入门例程64-NP64 输出前三同学的成绩(元组)-CSDN博客 Python基础入门例程63-NP63 修改报名名单(元组)-CSDN博客 目录 最近的博文: 描述...

ubuntu22.04 安装 jupyterlab

JupyterLab Install JupyterLab with pip: pip install jupyterlabNote: If you install JupyterLab with conda or mamba, we recommend using the conda-forge channel. Once installed, launch JupyterLab with: jupyter lab...

探索移动端可能性:Capacitor5.5.1和vue2在Android studio中精细融合

介绍&#xff1a; 移动应用开发是日益复杂的任务&#xff0c;本文将带领您深入探索如何无缝集成Capacitor5.5.1、Vue2和Android Studio&#xff0c;以加速您的开发流程Capacitor 是一个用于构建跨平台移动应用程序的开源框架。Vue 是一个流行的 JavaScript 框架&#xff0c;用…...

【深度学习】Python快捷调用InsightFace人脸检测,纯ONNX推理

pypi资料&#xff1a; https://pypi.org/project/insightface/ 模型选择&#xff1a; https://github.com/deepinsight/insightface/tree/master/python-package#model-zoo onnxruntime的GPU对应CUDA &#xff1a; https://onnxruntime.ai/docs/reference/compatibility …...

JAVA序列化和反序列化

JAVA序列化和反序列化 文章目录 JAVA序列化和反序列化序列化什么是序列化&#xff1f;为什么要进行序列化?如何将对线进行序列化具体实现过程 完整代码 序列化 什么是序列化&#xff1f; 就是将对象转化为字节的过程 为什么要进行序列化? 让数据更高效的传输让数据更好的…...

基于浣熊算法优化概率神经网络PNN的分类预测 - 附代码

基于浣熊算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于浣熊算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于浣熊优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络的光滑…...

uni-app打包后,打开软件时使其横屏显示

找到page.json文件&#xff0c;在global加入以下代码&#xff1a; 这样就可以横屏显示了。...

MYSQL基础知识之【创建,删除,选择数据库】

文章目录 前言MySQL 创建数据库使用 mysqladmin 创建数据库使用 PHP脚本 创建数据库 MySQL 删除数据库使用 mysqladmin 删除数据库使用PHP脚本删除数据库 MySQL 选择数据库从命令提示窗口中选择MySQL数据库使用PHP脚本选择MySQL数据库 后言 前言 hello world欢迎来到前端的新世…...

关于 token 和证书

关于 token 和证书 在网络检测中&#xff0c;Token通常是指一种特殊的令牌&#xff0c;用于在分布式系统中进行资源控制和访问管理。Token可以用于验证客户端的身份、限制客户端的访问权限以及控制客户端对某些资源的使用。 在网络检测中&#xff0c;Token通常用于以下几个方…...

基于SSM和微信小程序的场地预约网站

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SSM和微信小程序的场地预约网站,jav…...

Javascript每天一道算法题(十七)——缺失的第一个正整数_困难

文章目录 前言1、问题2、示例3、解决方法&#xff08;1&#xff09;方法1 总结 前言 提示&#xff1a; 1、问题 给你一个未排序的整数数组 nums &#xff0c;请你找出其中没有出现的最小的正整数。 请你实现时间复杂度为 O(n) 并且只使用常数级别额外空间的解决方案。 看了很久…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...