机器学习探索计划——KNN算法流程的简易了解
文章目录
- 数据准备阶段
- KNN预测的过程
- 1.计算新样本与已知样本点的距离
- 2.按照举例排序
- 3.确定k值
- 4.距离最近的k个点投票
- scikit-learn中的KNN算法
数据准备阶段
import matplotlib.pyplot as plt
import numpy as np
# 样本特征
data_X = [[0.5, 2],[1.8, 3],[3.9, 1],[4.7, 4],[6.2, 6],[7.5, 5],[8.3, 3.5],[9.1, 7],[9.8, 4.5]
]# 样本标记
data_y = [0, 0, 0, 1, 1, 1, 1, 1, 1]
X_train = np.array(data_X)
y_train = np.array(data_y)
X_train
array([[0.5, 2. ],[1.8, 3. ],[3.9, 1. ],[4.7, 4. ],[6.2, 6. ],[7.5, 5. ],[8.3, 3.5],[9.1, 7. ],[9.8, 4.5]])
y_train
array([0, 0, 0, 1, 1, 1, 1, 1, 1])
选出样本标记为0的样本特征
y_train == 0
array([ True, True, True, False, False, False, False, False, False])
X_train[y_train==0]
array([[0.5, 2. ],[1.8, 3. ],[3.9, 1. ]])
X_train[y_train==0, 0]
array([0.5, 1.8, 3.9])
X_train[y_train==0, 1]
array([2., 3., 1.])
X_train[y_train==1, 0].shape
(6,)
X_train[y_train==1, 1].shape
(6,)
plt.scatter(X_train[y_train==0, 0], X_train[y_train==0, 1], color='red', marker='x')
plt.scatter(X_train[y_train==1, 0], X_train[y_train==1, 1], color='black', marker='o')
plt.show()

增加新的样本点
data_new = np.array([4, 5])
plt.scatter(X_train[y_train==0, 0], X_train[y_train==0, 1], color='red', marker='x')
plt.scatter(X_train[y_train==1, 0], X_train[y_train==1, 1],color='black', marker='o')
plt.scatter(data_new[0], data_new[1], color='b', marker='^')
plt.show()

KNN预测的过程
1.计算新样本与已知样本点的距离
for data in X_train:print(np.sqrt(np.sum((data - data_new) ** 2)))
4.6097722286464435 2.973213749463701 4.001249804748512 1.2206555615733703 2.4166091947189146 3.5 4.5541190146942805 5.478138369920935 5.821511831131154
distances = [np.sqrt(np.sum((data - data_new) ** 2)) for data in X_train]
distances
[4.6097722286464435,2.973213749463701,4.001249804748512,1.2206555615733703,2.4166091947189146,3.5,4.5541190146942805,5.478138369920935,5.821511831131154]
2.按照举例排序
np.sort(distances)
array([1.22065556, 2.41660919, 2.97321375, 3.5 , 4.0012498 ,4.55411901, 4.60977223, 5.47813837, 5.82151183])
sort_index = np.argsort(distances)
sort_index
array([3, 4, 1, 5, 2, 6, 0, 7, 8], dtype=int64)
3.确定k值
k = 5
4.距离最近的k个点投票
first_k = [y_train[i] for i in sort_index[:k]]
first_k
[1, 1, 0, 1, 0]
from collections import Counter
Counter(first_k)
Counter({1: 3, 0: 2})
Counter(first_k).most_common()
[(1, 3), (0, 2)]
Counter(first_k).most_common(1)
[(1, 3)]
predict_y = Counter(first_k).most_common(1)[0][0]
predict_y
1
得到结果为1,KNN判断新加入的点data_y的标记应该为1,从图中也可以看到,新加入的点更靠近标记为1的点群。
scikit-learn中的KNN算法
from sklearn.neighbors import KNeighborsClassifier
kNN_classifier = KNeighborsClassifier(n_neighbors=5)
kNN_classifier.fit(X_train, y_train)
data_new.reshape(1, -1)
array([[4, 5]])
predict_y = kNN_classifier.predict(data_new.reshape(1, -1))
predict_y
array([1])
与手写KNN得到的结果相同,皆判断为1。
相关文章:
机器学习探索计划——KNN算法流程的简易了解
文章目录 数据准备阶段KNN预测的过程1.计算新样本与已知样本点的距离2.按照举例排序3.确定k值4.距离最近的k个点投票 scikit-learn中的KNN算法 数据准备阶段 import matplotlib.pyplot as plt import numpy as np# 样本特征 data_X [[0.5, 2],[1.8, 3],[3.9, 1],[4.7, 4],[6.…...
ES6之class类
ES6提供了更接近传统语言的写法,引入了Class类这个概念,作为对象的模板。通过Class关键字,可以定义类,基本上,ES6的class可以看作只是一个语法糖,它的绝大部分功能,ES5都可以做到,新…...
17 redis集群方案
1、RedisCluster分布式集群解决方案 为了解决单机内存,并发等瓶颈,可使用此方案解决问题. Redis-cluster是一种服务器Sharding技术,Redis3.0以后版本正式提供支持。 这里的集群是指多主多从,不是一主多从。 2、redis集群的目标…...
[数据结构]—栈和队列
💓作者简介🎉:在校大二迷茫大学生 💖个人主页🎉:小李很执着 💗系列专栏🎉:数据结构 每日分享✨:到头来,有意义的并不是结果,而是我们度…...
【GridSearch】 简单实现并记录运行效果
记录了使用for循环实现网格搜索的简单框架。 使用df_search记录每种超参数组合下的运行结果。 lgb_model.best_score返回模型的最佳得分 lgb_model.best_iteration_返回模型的最佳iteration也就是最佳n_extimator import numpy as np import pandas as pd import lightgbm as …...
SecureCRT出现Key exchange failed.No compatible key exchange method. 错误解决方法
SecureCRT出现Key exchange failed.No compatible key exchange method. 如下 Key exchange failed. No compatible key exchange method. The server supports these methods: curve25519-sha256,curve25519-sha256libssh.org,diffie-hellman-group-exchange-sha256解决方法&…...
Android RGB转YUV的算法
将 ARGB(Alpha-Red-Green-Blue)颜色空间转换为 YUV(亮度-色度)颜色空间的常用算法有以下几种: 矩阵转换法 使用预定义的转换矩阵将 RGB 值转换为 YUV 值。其中,Y 表示亮度,U 和 V 表示色度。这…...
Spring事务底层原理(待完善)
EnableTransactionManagement 我们经常使用EnableTransactionManagement开启事务, 这个注解导入一个类,Import(TransactionManagementConfigurationSelector.class), 会在spring容器增加两个bean, AutoProxyRegistrar和ProxyTransactionManagementConfiguration. AutoProxyRe…...
微信小程序 修改默认单选,多选按钮样式
微信小程序 修改默认单选,多选按钮样式 1.在微信开发者文档中复制一份单选或者多选的代码 <!--pages/index3/index.wxml--> <radio-group bindchange"radioChange"><label class"weui-cell weui-check__label" style"dis…...
「最优化基础知识2」一维搜索,以及python代码
最优化基础知识(2) 无约束优化问题,一维搜索 一、一维搜索 一维搜索的意思是在一个方向上找到最小点。 用数学语言描述,X*Xk tPk,从Xk沿着Pk方向行走t到达最小点X*。 1、收敛速度: 线性收敛࿱…...
工厂模式之抽象工厂模式(常用)
抽象工厂模式 工厂方法模式中考虑的是一类产品的生产,如畜牧场只养动物、电视机厂只生产电视机、计算机软件学院只培养计算机软件专业的学生等。 同种类称为同等级,也就是说:工厂方法模式中只考虑生产同等级的产品,但是在现实生…...
Apache服务Rwrite功能使用
Rewrite也称为规则重写,主要功能是实现浏览器访问时,URL的跳转。其正则表达式是基于Perl语言。要使用rewrite功能,Apache服务器需要添加rewrite模块。如果使用源码编译安装,–enable-rewrite。有了rewrite模块后,需要在…...
【一起来学kubernetes】6、kubernetes基本概念区分
前言 前一篇文章我们对k8s中的一些常见概念进行了一个梳理,接下来我们将常见一些概念的区别和联系进行一个理解 service和deployment的区别和联系 在Kubernetes中,Service和Deployment是两个不同的概念,它们之间存在一定的关联。 Deployme…...
Python基础入门例程66-NP66 增加元组的长度(元组)
最近的博文: Python基础入门例程65-NP65 名单中出现过的人(元组)-CSDN博客 Python基础入门例程64-NP64 输出前三同学的成绩(元组)-CSDN博客 Python基础入门例程63-NP63 修改报名名单(元组)-CSDN博客 目录 最近的博文: 描述...
ubuntu22.04 安装 jupyterlab
JupyterLab Install JupyterLab with pip: pip install jupyterlabNote: If you install JupyterLab with conda or mamba, we recommend using the conda-forge channel. Once installed, launch JupyterLab with: jupyter lab...
探索移动端可能性:Capacitor5.5.1和vue2在Android studio中精细融合
介绍: 移动应用开发是日益复杂的任务,本文将带领您深入探索如何无缝集成Capacitor5.5.1、Vue2和Android Studio,以加速您的开发流程Capacitor 是一个用于构建跨平台移动应用程序的开源框架。Vue 是一个流行的 JavaScript 框架,用…...
【深度学习】Python快捷调用InsightFace人脸检测,纯ONNX推理
pypi资料: https://pypi.org/project/insightface/ 模型选择: https://github.com/deepinsight/insightface/tree/master/python-package#model-zoo onnxruntime的GPU对应CUDA : https://onnxruntime.ai/docs/reference/compatibility …...
JAVA序列化和反序列化
JAVA序列化和反序列化 文章目录 JAVA序列化和反序列化序列化什么是序列化?为什么要进行序列化?如何将对线进行序列化具体实现过程 完整代码 序列化 什么是序列化? 就是将对象转化为字节的过程 为什么要进行序列化? 让数据更高效的传输让数据更好的…...
基于浣熊算法优化概率神经网络PNN的分类预测 - 附代码
基于浣熊算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于浣熊算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于浣熊优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络的光滑…...
uni-app打包后,打开软件时使其横屏显示
找到page.json文件,在global加入以下代码: 这样就可以横屏显示了。...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
爬虫基础学习day2
# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...
关于uniapp展示PDF的解决方案
在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项: 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库: npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...
在 Spring Boot 中使用 JSP
jsp? 好多年没用了。重新整一下 还费了点时间,记录一下。 项目结构: pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...
redis和redission的区别
Redis 和 Redisson 是两个密切相关但又本质不同的技术,它们扮演着完全不同的角色: Redis: 内存数据库/数据结构存储 本质: 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能: 提供丰…...
