当前位置: 首页 > news >正文

KingabseES执行计划-分区剪枝(partition pruning)

概述

分区修剪(Partition Pruning)是分区表性能的查询优化技术 。在分区修剪中,优化器分析SQL语句中的FROM和WHERE子句,以在构建分区访问列表时消除不需要的分区。此功能使数据库只能在与SQL语句相关的分区上执行操作。

参数 enable_partition_pruning 设置启用或禁用分区剪枝。

分区修剪的好处

分区修剪大大减少了从磁盘检索的数据量,缩短了处理时间,从而提高了查询性能并优化了资源利用率。

根据实际的SQL语句,Kingbase数据库可使用静态或动态修剪。静态修剪发生在编译时,预先访问有关分区的信息。动态修剪发生在运行时,这意味着语句要访问的确切分区事先是未知的。静态修剪的示例场景是一个SQL语句,该语句包含一个WHERE条件,分区键列上有一个常量文本。动态修剪的一个例子是在WHERE条件中使用运算符或函数。

可用于分区修剪的信息

可以对分区列执行分区修剪。

当您在范围或列表分区列上使用range、LIKE、 = 和IN列表谓词时,以及当您在哈希分区列中使用 = 或 IN列表谓词后,Kingbase数据库将修剪分区。

对于多级分区对象,Kingbase数据库可以使用相关谓词在每个级别上进行修剪。

Kingbase使用分区列上的谓词执行分区修剪,如下所示:

  • 当使用范围分区时,Kingbase只访问分区p2和p3,表示2020年二月和三月的分区。
  • 当使用哈希子分区时,Kingbase只访问每个分区中存储productid=100行的一个子分区。子分区和谓词之间的映射是基于Kingbase的内部哈希分布函数计算的。
CREATE TABLE orders_range_hash
(productid  int,saledate   DATE,custid     int,totalprice numeric
)PARTITION BY RANGE (saledate) SUBPARTITION BY HASH (productid) SUBPARTITIONS 8(PARTITION p1 VALUES LESS THAN(TO_DATE('2020-01-01', 'YYYY-MM-DD')),PARTITION p2 VALUES LESS THAN(TO_DATE('2022-02-01', 'YYYY-MM-DD')),PARTITION p3 VALUES LESS THAN(TO_DATE('2022-03-01', 'YYYY-MM-DD')),PARTITION p4 VALUES LESS THAN(TO_DATE('2022-04-01', 'YYYY-MM-DD')));SELECT *
FROM orders_range_hash
WHERE saledate BETWEEN (TO_DATE('2020-01-10', 'YYYY-MM-DD')) AND (TO_DATE('2020-02-11', 'YYYY-MM-DD'))AND productid = 100;

如何确定是否已使用分区修剪

不仅在给定查询的规划期间可以执行分区剪枝,在其执行期间也能执行分区剪枝。 这非常有用,因为如果子句中包含查询规划时值未知的表达式时,这可以剪枝掉更多的分区; 例如在PREPARE语句中定义的参数会使用从子查询拿到的值,或者嵌套循环连接内侧关系上的参数化值。 执行期间的分区剪枝可能在下列任何时刻执行:

  • 在查询计划的初始化期间。对于执行的初始化阶段就已知值的参数,可以在这里执行分区剪枝。这个阶段中被剪枝掉的分区将不会显示在查询的EXPLAINEXPLAIN ANALYZE结果中。通过观察EXPLAIN输出的“Subplans Removed”属性,可以确定被剪枝掉的分区数。
  • 在查询计划的实际执行期间。这里可以使用只有在实际查询执行时才能知道的值执行分区剪枝。这包括来自子查询的值以及来自执行时参数的值(例如来自于参数化嵌套循环连接的参数)。由于在查询执行期间这些参数的值可能会改变多次,所以只要分区剪枝使用到的执行参数发生改变,就会执行一次分区剪枝。要判断分区是否在这个阶段被剪枝,需要仔细地观察EXPLAIN ANALYZE输出中的loops属性。 对应于不同分区的子计划可以具有不同的值,这取决于在执行期间每个分区被修剪的次数。 如果每次都被剪枝,有些分区可能会显示为(never executed)

静态分区修剪

根据静态谓词确定何时使用静态修剪。

在许多情况下,优化器确定编译时要访问的分区。如果使用静态谓词,则会发生静态分区修剪。

如果在解析时,优化器可以识别访问的连续分区集,则执行计划中,将显示正在访问的分区的条件范围。

CREATE TABLE orders_list
(productid  int,saledate   DATE,custid     int,totalprice numeric
)
PARTITION BY LIST (custid)(PARTITION p1 VALUES  (1,2),PARTITION p2 VALUES  (3,4),PARTITION p2 VALUES  (5,6));explain analyzed
select * from orders_list
where custid = 3;Seq Scan on orders_list_p2  (cost=0.00..23.38 rows=5 width=48) (actual time=0.016..0.020 rows=17 loops=1)Filter: (custid = 3)Rows Removed by Filter: 17
Planning Time: 0.107 ms
Execution Time: 0.037 ms

动态分区修剪

如果可以修剪,但无法进行静态修剪,则进行动态修剪,因为分区键值仅在执行时获知。

使用绑定变量进行动态修剪

对分区列使用绑定变量的语句会导致动态修剪。

\set vid 4explain select * from orders_list where custid = :vid;QUERY PLAN
----------------------------------------------------------------Seq Scan on orders_list_p2  (cost=0.00..23.38 rows=5 width=48)Filter: (custid = 4)
(2 行记录)do$$declarec1 text;beginfor c1 in execute 'explain select * from orders_list where custid = :vid' using (random() * 10)::int % 6 + 1loopraise info '%',c1;end loop;end;$$;信息:  Seq Scan on orders_list_p1  (cost=0.00..23.38 rows=5 width=48)
信息:    Filter: (custid = 2)
ANONYMOUS BLOCK

使用子查询进行动态修剪

对分区列显式使用子查询的语句会导致动态修剪。

分区节点的(never executed),表示执行了分区修剪。如果过滤条件使用IN子查询,则不能分区修剪。

explain (costs off,analyze)
with v as (select (random() * 10)::int % 2 + 1 id)
select *
from orders_list
where custid = (select v.id from v);QUERY PLAN
-----------------------------------------------------------------------------Append (actual time=0.028..0.033 rows=17 loops=1)CTE v->  Result (actual time=0.004..0.004 rows=1 loops=1)InitPlan 2 (returns $1)->  CTE Scan on v (actual time=0.007..0.008 rows=1 loops=1)->  Seq Scan on orders_list_p1 (actual time=0.015..0.018 rows=17 loops=1)Filter: (custid = $1)Rows Removed by Filter: 16->  Seq Scan on orders_list_p2 (never executed)Filter: (custid = $1)->  Seq Scan on orders_list_p3 (never executed)Filter: (custid = $1)Planning Time: 0.172 msExecution Time: 0.069 ms
(14 行记录)explain (costs off,analyze)
with v as (select (random() * 10)::int % 2 + 1 id)
select *
from orders_list
where custid in (select v.id from v);QUERY PLAN
-----------------------------------------------------------------------------------Hash Semi Join (actual time=0.046..0.067 rows=16 loops=1)Hash Cond: (orders_list_p1.custid = v.id)CTE v->  Result (actual time=0.005..0.005 rows=1 loops=1)->  Append (actual time=0.009..0.023 rows=100 loops=1)->  Seq Scan on orders_list_p1 (actual time=0.008..0.010 rows=33 loops=1)->  Seq Scan on orders_list_p2 (actual time=0.003..0.004 rows=34 loops=1)->  Seq Scan on orders_list_p3 (actual time=0.002..0.004 rows=33 loops=1)->  Hash (actual time=0.012..0.012 rows=1 loops=1)Buckets: 1024  Batches: 1  Memory Usage: 9kB->  CTE Scan on v (actual time=0.008..0.008 rows=1 loops=1)Planning Time: 0.303 msExecution Time: 0.095 ms
(13 行记录)

具有关联需求的动态修剪

等于(=)谓词,限制子查询的结果只能有一行。IN 、EXISTS、ANY 等方式,使用子查询时,不能执行动态修剪。多表连接,也不能执行动态修剪。

这种不能使用动态修剪的情况,可以使用LATERAL语法解决。

LATERAL子查询不能是简单子查询。

explain (costs off ,analyze)
with t (id) as (values (1), (2))
select *
from t, lateral ( select * from orders_list t1 where t1.custid = t.id limit all) t1;QUERY PLAN
--------------------------------------------------------------------------------------Nested Loop (actual time=0.022..0.037 rows=33 loops=1)->  Values Scan on "*VALUES*" (actual time=0.002..0.003 rows=2 loops=1)->  Append (actual time=0.009..0.013 rows=16 loops=2)->  Seq Scan on orders_list_p1 t1 (actual time=0.007..0.009 rows=16 loops=2)Filter: (custid = "*VALUES*".column1)Rows Removed by Filter: 16->  Seq Scan on orders_list_p2 t1_1 (never executed)Filter: (custid = "*VALUES*".column1)->  Seq Scan on orders_list_p3 t1_2 (never executed)Filter: (custid = "*VALUES*".column1)Planning Time: 0.189 msExecution Time: 0.072 ms

分区修剪提示

使用分区修剪时,应考虑以下事项:

  • 数据类型转换

    若要从分区修剪中获得最大的性能优势,应避免使用需要数据库转换指定数据类型的构造。

  • 函数调用

    避免在分区列上使用隐式或显式函数。如果您的查询通常使用函数调用,请考虑在这些情况下使用虚拟列和虚拟列分区,以从分区修剪中受益。

相关文章:

KingabseES执行计划-分区剪枝(partition pruning)

概述 分区修剪(Partition Pruning)是分区表性能的查询优化技术 。在分区修剪中,优化器分析SQL语句中的FROM和WHERE子句,以在构建分区访问列表时消除不需要的分区。此功能使数据库只能在与SQL语句相关的分区上执行操作。 参数 enable_partition_pruning 设…...

Operator-sdk 在 KaiwuDB 容器云中的使用

一、使用背景KaiwuDB Operator 是一个自动运维部署工具,可以在 Kubernetes 环境上部署 KaiwuDB集群,借助 Operator 可实现无缝运行在公有云厂商提供的 Kubernetes 平台上,让 KaiwuDB 成为真正的 Cloud-Native 数据库。使用传统的自动化工具会…...

【数据挖掘】2、数据预处理

文章目录一、数据预处理的意义1.1 缺失数据1.1.1 原因1.1.2 方案1.1.3 离群点分析1.2 重复数据1.2.1 原因1.2.2 去重的方案1.3 数据转换1.4 数据描述二、数据预处理方法2.1 特征选择 Feature Selection2.2 特征提取 Feature Extraction2.2.1 PCA 主成分分析2.2.2 LDA 线性判别分…...

(四十六)大白话在数据库里,哪些操作会导致在表级别加锁呢?

之前我们已经给大家讲解了数据库里的行锁的概念,其实还是比较简单,容易理解的,因为在讲解锁这个概念之前,对于多事务并发以及隔离,我们已经深入讲解过了,所以大家应该很容易在脑子里有一个多事务并发执行的…...

【Android源码面试宝典】MMKV从使用到原理分析(二)

上一章节,我们从使用入手,进行了MMKV的简单讲解,我们通过分析简单的运行时日志,从中大概猜到了一些MMKV的代码内部流程,同时,我们也提出了若干的疑问?还是那句话,带着目标(问题)去阅读一篇源码,那么往往收获的知识,更加深入&扎实。 本节,我们一起来从源码层次…...

如何使用ADFSRelay分析和研究针对ADFS的NTLM中继攻击

关于ADFSRelay ADFSRelay是一款功能强大的概念验证工具,可以帮助广大研究人员分析和研究针对ADFS的NTLM中继攻击。 ADFSRelay这款工具由NTLMParse和ADFSRelay这两个实用程序组成。其中,NTLMParse用于解码base64编码的NTLM消息,并打印有关消…...

【Python学习笔记】第二十二节 Python XML 解析

一、什么是XMLXML即ExtentsibleMarkup Language(可扩展标记语言),是用来定义其它语言的一种元语言。XML 被设计用来传输和存储数据。XML 是一套定义语义标记的规则,它没有标签集(tagset),也没有语法规则(grammatical rule)。任何XML文档对任何…...

5分钟轻松拿下Java枚举

文章目录一、枚举(Enum)1.1 枚举概述1.2 定义枚举类型1.2.1 静态常量案例1.2.2 枚举案例1.2.3 枚举与switch1.3 枚举的用法1.3.1 枚举类的成员1.3.2 枚举类的构造方法1)枚举的无参构造方法2)枚举的有参构造方法1.3.3 枚举中的抽象方法1.4 Enum 类1.4.1 E…...

华为OD机试【独家】提供C语言题解 - 最小传递延迟

最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析+经验分享,题型分享,防作弊指南)华为od机试,独家整理 已参加机试人员的实战技巧文章目录 最近更新的博客使用说明最小…...

【Web前端】关于JS数组方法的一些理解

一、具备栈特性的方法unshift(...items: T[]) : number将一个或多个元素添加到数组的开头,并返回该数组的新长度。shift(): T | undefined从数组中删除第一个元素,并返回该元素的值。此方法更改数组的长度。二、具备队列特性的方法push(...items: T[]): …...

多智能体集群协同控制笔记(1):线性无领航多智能体系统的一致性

对于连续时间高阶线性多智能体系统的状态方程为: x˙i(t)Axi(t)Bui(t),i1,2..N\dot {\mathbf{x}}_i(t)A\mathbf{x}_i(t)B\mathbf{u}_i(t),i1,2..N x˙i​(t)Axi​(t)Bui​(t),i1,2..N 下标iii代表第iii个智能体,ui(t)∈Rq1\mathbf{u}_i(t)\in R^{q \time…...

hadoop-Yarn资源调度器【尚硅谷】

大数据学习笔记 Yarn资源调度器 Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行与操作系统之上的应用程序。 (也就是负责MapTask、ReduceTask等任…...

聊聊如何避免多个jar通过maven打包成一个jar,多个同名配置文件发生覆盖问题

前言 不知道大家在开发的过程中,有没有遇到这种场景,外部的项目想访问内部nexus私仓的jar,因为私仓不对外开放,导致外部的项目没法下载到私仓的jar,导致项目因缺少jar而无法运行。 通常遇到这种场景,常用…...

Flume 使用小案例

案例一:采集文件内容上传到HDFS 1)把Agent的配置保存到flume的conf目录下的 file-to-hdfs.conf 文件中 # Name the components on this agent a1.sources r1 a1.sinks k1 a1.channels c1 # Describe/configure the source a1.sources.r1.type spoo…...

DLO-SLAM代码阅读

文章目录DLO-SLAM点评代码解析OdomNode代码结构主函数 main激光回调函数 icpCB初始化 initializeDLO重力对齐 gravityAlign点云预处理 preprocessPoints关键帧指标 computeMetrics设定关键帧阈值setAdaptiveParams初始化目标数据 initializeInputTarget设置源数据 setInputSour…...

X和Ku波段小尺寸无线电设计

卫星通信、雷达和信号情报(SIGINT)领域的许多航空航天和防务电子系统早就要求使用一部分或全部X和Ku频段。随着这些应用转向更加便携的平台,如无人机(UAV)和手持式无线电等,开发在X和Ku波段工作,同时仍然保持极高性能水平的新型小尺寸、低功耗…...

推荐算法 - 汇总

本文主要对推荐算法整体知识点做汇总,做到总体的理解;深入理解需要再看专业的材料。推荐算法的意义推荐根据用户兴趣和行为特点,向用户推荐所需的信息或商品,帮助用户在海量信息中快速发现真正所需的商品,提高用户黏性…...

Android 系统的启动流程

前言:从开机的那一刻,到开机完成后launcher将所有应用进行图标展示的这个过程,大概会有哪一些操作?执行了哪些代码?作为Android开发工程师的我们,有必要好好的梳理一遍。既然要梳理Android系统的启动流程&a…...

自学5个月Java找到了9K的工作,我的方式值得大家借鉴 第二部分

我的学习心得,我认为能不能自学成功的要素有两点。 第一点就是自身的问题,虽然想要转行学习Java的人很多,但是非常强烈的想要转行学好的人是小部分。而大部分人只是抱着试试的心态来学习Java,这是完全不可能的。所以能不能学成Jav…...

Vue 3 第五章:reactive全家桶

文章目录1. reactive1.1. reactive函数创建一个响应式对象1.2. 修改reactive创建的响应式对象的属性2. readOnly2.1. 使用 readonly 函数创建一个只读的响应式对象2.2. 如何修改嵌套在只读响应式对象中的对象?3. shallowReactive3.1. 使用 shallowReactive 函数创建一个浅层响…...

网络编程(Modbus进阶)

思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中,我们已经大致实现了rpc服务端的各项功能代…...

golang循环变量捕获问题​​

在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下: 问题背景 看这个代码片段: fo…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...