当前位置: 首页 > news >正文

Flash Attention:高效注意力机制的突破与应用

alt

注意力机制彻底改变了自然语言处理和深度学习领域。它们允许模型在执行机器翻译、语言生成等任务时专注于输入数据的相关部分。

这篇博客[1]中,我们将深入研究被称为“Flash Attention”的注意力机制的突破性进展。我们将探讨它是什么、它是如何工作的,以及为什么它在人工智能社区中引起了如此多的关注。

在我们深入了解 Flash Attention 的细节之前,让我们快速回顾一下注意力机制的基础知识及其在机器学习中的重要性。

注意力机制

注意力机制使模型能够以不同的方式权衡输入数据的不同部分,在执行任务时关注最相关的信息。

这模仿了人类选择性地关注周围环境的某些方面,同时过滤掉干扰的能力。注意力机制在提高各种人工智能模型的性能方面发挥了重要作用,特别是在序列到序列任务中。

Flash Attention 的诞生

Flash Attention,顾名思义,为注意力机制带来了闪电般快速且高效内存的解决方案。它解决了传统注意力机制中存在的一些低效率问题,使它们更适合大规模任务和复杂模型。

但 Flash Attention 到底是什么?为什么它会在 AI 社区中引起如此大的轰动?让我们来分解一下 Flash Attention 的关键方面及其核心组件。

Flash Attention的核心组件

  • 快:Flash Attention 的速度是其突出特点之一。根据该论文,它可以加快 BERT-large 等模型的训练速度,超越之前的速度记录。

​ 例如,与基线实施相比,GPT2 训练的速度提高了三倍。这种速度提升是在不影响准确性的情况下实现的。

  • 内存高效:传统的注意力机制(例如普通注意力)存在二次内存复杂度 (O(N²)),其中 N 是序列长度。另一方面,Flash Attention 将内存复杂度降低到线性 (O(N))。这种优化是通过有效利用硬件内存层次结构并最大限度地减少不必要的数据传输来实现的。
  • 准确:Flash Attention 保持与传统注意力机制相同的准确度。它不是注意力的近似值,而是注意力的精确表示,使其成为各种任务的可靠选择。
  • IO 提升:Flash Attention 的“IO 提升”是指它优化现代 GPU 中不同级别内存之间的内存访问和通信的能力。通过考虑内存层次结构并减少通信开销,Flash Attention 充分利用高速内存并最大化计算效率。

揭秘 Flash 注意力

alt

Flash Attention 的有效性在于它对其运行的硬件的理解。它利用了 GPU 中不同类型的内存具有不同容量和速度的事实。例如,SRAM 速度更快但更小,而 HBM(高带宽存储器)更大但速度更慢。通过最大限度地减少这些内存类型之间的通信,Flash Attention 显着加快了计算速度

Flash注意力算法:平铺和重新计算

Flash Attention的算法可以概括为两个主要思想:平铺和重新计算。

平铺:在前向和后向传递过程中,Flash Attention 将注意力矩阵划分为更小的块,从而优化内存使用并提高计算效率。

重新计算:在后向传递中,Flash Attention 使用存储的输出和 softmax 归一化统计数据重新计算注意力矩阵,从而无需过多的内存存储。

挑战

Flash Attention 的空间复杂度与序列长度和注意力头维度呈线性关系。这使得它适合处理大型模型和任务。

然而,实现 Flash Attention 会带来挑战,特别是在编写优化的 CUDA 内核方面。对较低级语言编码的需求可能会阻碍采用,但像 Triton 这样的项目为这个问题提供了潜在的解决方案。

总结

Flash Attention 标志着注意力机制的重大进步,解决了效率问题,并实现了更快、更节省内存的 AI 模型训练。

通过考虑硬件和内存层次结构,Flash Attention 优化了计算,为各种 NLP 和 AI 任务带来了显着的改进。

在这篇博客中,我们只触及了 Flash Attention 的皮毛,但它的潜在影响是不可否认的。随着人工智能研究人员和从业者继续尝试这一突破,我们预计会出现更优化、更高效的注意力机制,从而突破人工智能模型所能实现的界限。

Reference

[1]

Source: https://medium.com/@sthanikamsanthosh1994/introduction-to-flash-attention-a-breakthrough-in-efficient-attention-mechanism-3eb47e8962c3

本文由 mdnice 多平台发布

相关文章:

Flash Attention:高效注意力机制的突破与应用

注意力机制彻底改变了自然语言处理和深度学习领域。它们允许模型在执行机器翻译、语言生成等任务时专注于输入数据的相关部分。 在这篇博客[1]中,我们将深入研究被称为“Flash Attention”的注意力机制的突破性进展。我们将探讨它是什么、它是如何工作的&#xff0c…...

Flutter开发警告Constructors in ‘@immutable‘ classes should be declared as ‘const‘

文章目录 警告信息报错代码警告原因修改后的代码 警告信息 Flutter开发遇到如下警告 Constructors in ‘immutable’ classes should be declared as ‘const’. 报错代码 class TaskWidget extends StatefulWidget {final String title;final bool isChecked;final int ord…...

想当老师应该去学什么专业

专业选择是决定未来职业发展的重要步骤,如果你也想成为一名老师,那么这五个专业可能会适合你! 教育学专业 教育学专业是培养教育理论和方法的学科,这些理论知识将帮助你理解教学过程、学生发展、课程设计和评估。该专业将让你全面…...

【LM、LLM】浅尝二叉树在前馈神经网络上的应用

前言 随着大模型的发展,模型参数量暴涨,以Transformer的为组成成分的隐藏神经元数量增长的越来越多。因此,降低前馈层的推理成本逐渐进入视野。前段时间看到本文介绍的相关工作还是MNIST数据集上的实验,现在这个工作推进到BERT上…...

鸿蒙4.0开发笔记之ArkTs语言基础与基本组件结构(四)

文章声明&#xff1a;本文关于HarmonyOS系统的部分内容和描述借鉴于华为官网的“HarmonyOS开发者学堂”&#xff0c;有需要的也可以进入官网查看。<HarmonyOS第一课>ArkTS开发语言介绍 一、ArkTs语言介绍 ArkTS是鸿蒙系统&#xff08;HarmonyOS&#xff09;优选的主力应…...

Another app is currently holding the yum lock; waiting for it to exit...

今天使用yum进行下载的时候报错 解决办法&#xff1a; 执行 rm -f /var/run/yum.pid 然后重新运行yum指令即可&#xff0c;发现已经可以正常下载啦&#xff01;...

size和shape的区别与联系

对于Numpy数据类型 shape和size都是属于Numpy的属性 arr.shape 将返回一个包含两个元素的元组&#xff0c;例如 (m, n)&#xff0c;其中 m 表示数组的行数&#xff0c;n 表示数组的列数。arr.size 将返回数组中元素的总数。 举例: 输入&#xff1a; import numpy as np# 创…...

浅谈STL中的分配器

分配器是STL中的六大部件之一&#xff0c;是各大容器能正常运作的关键&#xff0c;但是对于用户而言确是透明的&#xff0c;它似乎更像是一个幕后英雄&#xff0c;永远也不会走到舞台上来&#xff0c;观众几乎看不到它的身影&#xff0c;但是它又如此的重要。作为用户&#xff…...

禁止指定电脑程序运行的2种方法

你可能要问了&#xff0c;为什么要禁止电脑程序运行呢&#xff0c;因为有的公司要净化公司的工作环境&#xff0c;防止某些刺头员工在公司电脑上瞎搞。也有部分家长&#xff0c;是为了防止自己家的孩子利用电脑乱下载东西。 今天就分享2种禁止指定电脑程序运行的方法&#xff1…...

【Redis】前言--redis产生的背景以及过程

一.介绍 为什么会出现Redis这个中间件&#xff0c;从原始的磁盘存储到Redis中间又发生了哪些事&#xff0c;下面进入正题 二.发展史 2.1 磁盘存储 最早的时候都是以磁盘进行数据存储&#xff0c;每个磁盘都有一个磁道。每个磁道有很多扇区&#xff0c;一个扇区接近512Byte。…...

Java面试-微服务篇-SpringCloud

Java面试-微服务篇-SpringCloud SpringCloud 常见组件注册中心Eureka, Nacos负载均衡Ribbon服务雪崩, 熔断降级微服务的监控来源 SpringCloud 常见组件 通常情况下 Eureka: 注册中心Ribbon: 负载均衡Feign: 远程调用Hystrix: 服务熔断Zuul/Gateway: 网关 SpringCloudAlibaba…...

Git使用详解

文章目录 ⭐️写在前面的话⭐️&#x1f4cc;What is it?Git的诞生 &#x1f308;Why learn it?集中式vs分布式 &#x1f9f2;Who does it?&#x1f388;When to use it? And Where to use it?&#x1f48a;How to use it?&#xff08;重点&#xff09;1、安装Git在Linux…...

智慧楼宇可视化视频综合管理系统,助力楼宇高效安全运行

随着互联网技术的进步和发展&#xff0c;智能化的楼宇建设也逐步成为人们选择办公场所是否方便的一个重要衡量因素。在智能化楼宇中&#xff0c;安全管理也是重要的一个模块。得益于互联网新兴技术的进步&#xff0c;安防视频监控技术也得到了快速发展并应用在楼宇的安全管理中…...

【opencv】计算机视觉:实时目标追踪

目录 前言 解析 深入探究 前言 目标追踪技术对于民生、社会的发展以及国家军事能力的壮大都具有重要的意义。它不仅仅可以应用到体育赛事当中目标的捕捉&#xff0c;还可以应用到交通上&#xff0c;比如实时监测车辆是否超速等&#xff01;对于国家的军事也具有一定的意义&a…...

生态对对碰|华为OceanStor闪存存储与OceanBase完成兼容性互认证!

近日&#xff0c;北京奥星贝斯科技有限公司 OceanBase 数据库与华为技术有限公司 OceanStor Dorado 全闪存存储系统、OceanStor 混合闪存存储系统完成兼容性互认证。 OceanBase 数据库挂载 OceanStor 闪存存储做为数据盘和日志盘&#xff0c;在 OceanStor 闪存存储系统卓越性能…...

微服务负载均衡器Ribbon

1.什么是Ribbon 目前主流的负载方案分为以下两种&#xff1a; 集中式负载均衡&#xff0c;在消费者和服务提供方中间使用独立的代理方式进行负载&#xff0c;有硬件的&#xff08;比如 F5&#xff09;&#xff0c;也有软件的&#xff08;比如 Nginx&#xff09;。 客户端根据…...

win10戴尔电脑安装操作系统遇到的问题MBR分区表只能安装GPT磁盘

首先按F2启动boot管理界面 调整启动盘的启动顺序&#xff0c;这里启动U盘为第一顺序。 第一步 选择安装程序的磁盘 第二步 转换磁盘为GPT磁盘 一般出现 磁盘0和1&#xff0c;说明存在两个盘 &#xff0c;这里两个盘不是说的是C盘和D盘的问题&#xff0c;而是在物理上实际存在…...

阿里云服务器(vgn7i-vws) anaconda(py39)+pytorch1.12.0(cu113)

用xshell连接ip地址&#xff0c;端口号22&#xff0c;输入用户密码 安装anaconda 2022 10 py3.9 wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh sha256sum Anaconda3-2022.10-Linux-x86_64.sh #校验数据完整性 chmod ux Anaconda3-2022.10-…...

使用 STM32F7 和 TensorFlow Lite 开发低功耗人脸识别设备

本文旨在介绍如何使用 STM32F7 和 TensorFlow Lite框架开发低功耗的人脸识别设备。首先&#xff0c;我们将简要介绍 STM32F7 的特点和能力。接下来&#xff0c;我们将讨论如何使用 TensorFlow Lite 在 STM32F7 上实现人脸识别算法。然后&#xff0c;我们将重点关注如何优化系统…...

【wireshark】基础学习

TOC 查询tcp tcp 查询tcp握手请求的代码 tcp.flags.ack 0 确定tcp握手成功的代码 tcp.flags.ack 1 确定tcp连接请求的代码 tcp.flags.ack 0 and tcp.flags.syn 1 3次握手后确定发送成功的查询 tcp.flags.fin 1 查询某IP对外发送的数据 ip.src_host 192.168.73.134 查询某…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...