探索用卷积神经网络实现MNIST数据集分类
问题
对比单个全连接网络,在卷积神经网络层的加持下,初始时,整个神经网络模型的性能是否会更好。
方法
模型设计
两层卷积神经网络(包含池化层),一层全连接网络。
选择 5 x 5 的卷积核,输入通道为 1,输出通道为 10:
此时图像矩阵经过 5 x 5 的卷积核后会小两圈,也就是4个数位,变成 24 x 24,输出通道为10;
选择 2 x 2 的最大池化层:
此时图像大小缩短一半,变成 12 x 12,通道数不变;
再次经过5 x 5的卷积核,输入通道为 10,输出通道为 20:
此时图像再小两圈,变成 8*8,输出通道为20;
再次经过2 x 2的最大池化层:
此时图像大小缩短一半,变成 4 x 4,通道数不变;
最后将图像整型变换成向量,输入到全连接层中:
输入一共有 4 x 4 x 20 = 320个元素,输出为 10.
代码
准备数据集
# 准备数据集
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST(root='data’,
train=True,
download=True,
transform=transform)
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size)
test_dataset = datasets.MNIST(root='data',
train=False,
download=True,
transform=transform)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size)
建立模型
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = torch.nn.Conv2d(10, 20, kernel_size=5)
self.pooling = torch.nn.MaxPool2d(2)
self.fc = torch.nn.Linear(320, 10)
def forward(self, x):
batch_size = x.size(0)
x = F.relu(self.pooling(self.conv1(x)))
x = F.relu(self.pooling(self.conv2(x)))
x = x.view(batch_size, -1)
x = self.fc(x)
return x
model = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
构造损失函数+优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
训练+测试
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
inputs,target=inputs.to(device),target.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('[%d,%.5d] loss:%.3f' % (epoch + 1, batch_idx + 1, running_loss / 2000))
running_loss = 0.0
def test():
correct=0
total=0
with torch.no_grad():
for data in test_loader:
inputs,target=data
inputs,target=inputs.to(device),target.to(device)
outputs=model(inputs)
_,predicted=torch.max(outputs.data,dim=1)
total+=target.size(0)
correct+=(predicted==target).sum().item()
print('Accuracy on test set:%d %% [%d%d]' %(100*correct/total,correct,total))
if __name__ =='__main__':
for epoch in range(10):
train(epoch)
test()
运行结果
(1)batch_size:64,训练次数:10
(2)batch_size:128,训练次数:10
(3)batch_size:128,训练次数:10
结语
对比单个全连接网络,在卷积神经网络层的加持下,初始时,整个神经网络模型的性能显著提升,准确率最低为96%。在batch_size:64,训练次数:100情况下,准确率达到99%。下一阶在平均池化,3*3卷积核,以及不同通道数的情况下,探索对模型性能的影响。
相关文章:

探索用卷积神经网络实现MNIST数据集分类
问题对比单个全连接网络,在卷积神经网络层的加持下,初始时,整个神经网络模型的性能是否会更好。方法模型设计两层卷积神经网络(包含池化层),一层全连接网络。选择 5 x 5 的卷积核,输入通道为 1&…...

MySQL 索引失效场景
1,前言 索引主要是为了提高表的查询速率,但在某些情况下,索引也会失效的情况。 2,失效场景 2.1 最左前缀法则 查询从索引最左列开始,如果跳过索引中的age列,那么age后面字段的索引都将失效,…...

Xcode开发工具,图片放入ios工程
Xcode开发工具,图片放入ios工程,有三种方式: 一:Assets Assets.xcassets 一般是以蓝色的Assets.xcassets的文件夹形式在工程中,以Image Set的形式管理。当一组图片放入的时候同时会生成描述文件Contents.jso…...

操作系统权限提升(十九)之Linux提权-SUID提权
系列文章 操作系统权限提升(十八)之Linux提权-内核提权 SUID提权 SUID介绍 SUID是一种特殊权限,设置了suid的程序文件,在用户执行该程序时,用户的权限是该程序文件属主的权限,例如程序文件的属主是root,那么执行该…...

直播 | StarRocks 实战系列第三期--StarRocks 运维的那些事
2023 年开春, StarRocks 社区重磅推出入门级实战系列直播,手把手带你从 Zero to Hero 成为一个 “StarRocks Pro”!通过实际操作和应用场景的结合,我们将帮你系统性地学习 StarRocks 这个当今最热门的开源 OLAP 数据库。本次&…...
KingabseES执行计划-分区剪枝(partition pruning)
概述 分区修剪(Partition Pruning)是分区表性能的查询优化技术 。在分区修剪中,优化器分析SQL语句中的FROM和WHERE子句,以在构建分区访问列表时消除不需要的分区。此功能使数据库只能在与SQL语句相关的分区上执行操作。 参数 enable_partition_pruning 设…...

Operator-sdk 在 KaiwuDB 容器云中的使用
一、使用背景KaiwuDB Operator 是一个自动运维部署工具,可以在 Kubernetes 环境上部署 KaiwuDB集群,借助 Operator 可实现无缝运行在公有云厂商提供的 Kubernetes 平台上,让 KaiwuDB 成为真正的 Cloud-Native 数据库。使用传统的自动化工具会…...

【数据挖掘】2、数据预处理
文章目录一、数据预处理的意义1.1 缺失数据1.1.1 原因1.1.2 方案1.1.3 离群点分析1.2 重复数据1.2.1 原因1.2.2 去重的方案1.3 数据转换1.4 数据描述二、数据预处理方法2.1 特征选择 Feature Selection2.2 特征提取 Feature Extraction2.2.1 PCA 主成分分析2.2.2 LDA 线性判别分…...
(四十六)大白话在数据库里,哪些操作会导致在表级别加锁呢?
之前我们已经给大家讲解了数据库里的行锁的概念,其实还是比较简单,容易理解的,因为在讲解锁这个概念之前,对于多事务并发以及隔离,我们已经深入讲解过了,所以大家应该很容易在脑子里有一个多事务并发执行的…...
【Android源码面试宝典】MMKV从使用到原理分析(二)
上一章节,我们从使用入手,进行了MMKV的简单讲解,我们通过分析简单的运行时日志,从中大概猜到了一些MMKV的代码内部流程,同时,我们也提出了若干的疑问?还是那句话,带着目标(问题)去阅读一篇源码,那么往往收获的知识,更加深入&扎实。 本节,我们一起来从源码层次…...

如何使用ADFSRelay分析和研究针对ADFS的NTLM中继攻击
关于ADFSRelay ADFSRelay是一款功能强大的概念验证工具,可以帮助广大研究人员分析和研究针对ADFS的NTLM中继攻击。 ADFSRelay这款工具由NTLMParse和ADFSRelay这两个实用程序组成。其中,NTLMParse用于解码base64编码的NTLM消息,并打印有关消…...

【Python学习笔记】第二十二节 Python XML 解析
一、什么是XMLXML即ExtentsibleMarkup Language(可扩展标记语言),是用来定义其它语言的一种元语言。XML 被设计用来传输和存储数据。XML 是一套定义语义标记的规则,它没有标签集(tagset),也没有语法规则(grammatical rule)。任何XML文档对任何…...

5分钟轻松拿下Java枚举
文章目录一、枚举(Enum)1.1 枚举概述1.2 定义枚举类型1.2.1 静态常量案例1.2.2 枚举案例1.2.3 枚举与switch1.3 枚举的用法1.3.1 枚举类的成员1.3.2 枚举类的构造方法1)枚举的无参构造方法2)枚举的有参构造方法1.3.3 枚举中的抽象方法1.4 Enum 类1.4.1 E…...
华为OD机试【独家】提供C语言题解 - 最小传递延迟
最近更新的博客 华为od 2023 | 什么是华为od,od 薪资待遇,od机试题清单华为OD机试真题大全,用 Python 解华为机试题 | 机试宝典【华为OD机试】全流程解析+经验分享,题型分享,防作弊指南)华为od机试,独家整理 已参加机试人员的实战技巧文章目录 最近更新的博客使用说明最小…...
【Web前端】关于JS数组方法的一些理解
一、具备栈特性的方法unshift(...items: T[]) : number将一个或多个元素添加到数组的开头,并返回该数组的新长度。shift(): T | undefined从数组中删除第一个元素,并返回该元素的值。此方法更改数组的长度。二、具备队列特性的方法push(...items: T[]): …...

多智能体集群协同控制笔记(1):线性无领航多智能体系统的一致性
对于连续时间高阶线性多智能体系统的状态方程为: x˙i(t)Axi(t)Bui(t),i1,2..N\dot {\mathbf{x}}_i(t)A\mathbf{x}_i(t)B\mathbf{u}_i(t),i1,2..N x˙i(t)Axi(t)Bui(t),i1,2..N 下标iii代表第iii个智能体,ui(t)∈Rq1\mathbf{u}_i(t)\in R^{q \time…...

hadoop-Yarn资源调度器【尚硅谷】
大数据学习笔记 Yarn资源调度器 Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行与操作系统之上的应用程序。 (也就是负责MapTask、ReduceTask等任…...

聊聊如何避免多个jar通过maven打包成一个jar,多个同名配置文件发生覆盖问题
前言 不知道大家在开发的过程中,有没有遇到这种场景,外部的项目想访问内部nexus私仓的jar,因为私仓不对外开放,导致外部的项目没法下载到私仓的jar,导致项目因缺少jar而无法运行。 通常遇到这种场景,常用…...
Flume 使用小案例
案例一:采集文件内容上传到HDFS 1)把Agent的配置保存到flume的conf目录下的 file-to-hdfs.conf 文件中 # Name the components on this agent a1.sources r1 a1.sinks k1 a1.channels c1 # Describe/configure the source a1.sources.r1.type spoo…...
DLO-SLAM代码阅读
文章目录DLO-SLAM点评代码解析OdomNode代码结构主函数 main激光回调函数 icpCB初始化 initializeDLO重力对齐 gravityAlign点云预处理 preprocessPoints关键帧指标 computeMetrics设定关键帧阈值setAdaptiveParams初始化目标数据 initializeInputTarget设置源数据 setInputSour…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...

初学 pytest 记录
安装 pip install pytest用例可以是函数也可以是类中的方法 def test_func():print()class TestAdd: # def __init__(self): 在 pytest 中不可以使用__init__方法 # self.cc 12345 pytest.mark.api def test_str(self):res add(1, 2)assert res 12def test_int(self):r…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...