量化交易:筹码理论的探索-筹码分布计算的实现
前言
很多朋友习惯了同花顺、大智慧等看盘软件,经常问到筹码分布如何计算。
说起来筹码分布的理论在庄股时代堪称是一个划时代产品,虽然历经level2数据、资金流统计、拆单算法与反拆单算法等新型技术的变革,庄股时代也逐渐淡出市场,但其背后的市场逻辑仍然具备一定的参考意义。
本篇就以BigQuant平台为基础,复现经典筹码理论的基础变量计算,为因子挖掘提供更多参考特征。
资金和筹码
资金是推动筹码移动的源动力,资金的强弱决定了筹码移动的方向。买入的资金强于卖出的筹码,说明筹码需求大于供应,股价就会上涨。相反,卖出的筹码强于买入的资金,说明筹码需求小于供应,股价就会下跌。当买入的力量和卖出的力量接近平衡时,说明供求相近,股价就会横盘震荡。
筹码理论背后的经典逻辑
- 谁的筹码不抛
在筹码价位较高,没有明显出货迹象时,试想一只股票下跌了30%以上,而从没有放量,高端和低端筹码都不动,这是不正常的,散户重在散,下跌到一定程度一定会有很多人止损和出局,而持续盘跌不放量,只能说明其中有主力被套了,因为主力一般无法止损出局,那样成本太高了。这种股最适用于擒庄操作
- 谁的筹码不卖
在筹码价位较低时,一只股票上涨了20%以上,而从不放量,底端密集筹码不动也是不正常的,散户一般很少有人经得起如此引诱而一致不出货,这只能说明其中有主力在运做,而多数主力没有30%以上的利润是不会离场的,因为那样除去费用纯利就太低了。这种股最适用于坐轿操作。
- 机会和风险提示
有些股票虽然高位无量,但其拉升时出现了放量或长时间盘整,使筹码出现了高位集中,这些股一般是主力离场了,后市风险会较大。有些股低位放量或长时间盘整,出现筹码低位密集,一般是有主力进行收集造成的,操作起来机会比较大。
筹码理论的关键参数
- 筹码分布
计算历史所有筹码的换手价位,类似分价表
- 成本均线
以成交量为权重的价格平均线,用来表示N日内的市场参与者平均建仓成本。无穷成本平均线是最重要的成本均线,反映上市以来所有交易者的平均建仓成本,是市场牛熊的重要分水岭。
- 筹码集中度
刻画主要筹码堆积的主要区域的幅度,数值越大表示筹码集中的幅度越大,筹码就越分散。
- 活跃筹码
价附近的筹码是最不稳定的,也是最容易参与交易的,因为在股价附近的股票持有者,最经受不住诱惑,盈利的想赶快把浮动盈利换成实际盈利;被套的想趁着亏损得还少赶快卖掉,利用资金买另外的股票,把亏损赶快挣回来。而远离股价,在下方的筹码,由于有了一定的利润,持股信心会增强;在上方的筹码,由于被套太深而不愿割肉,所以在股价附近的筹码是最活跃的,而在股价上下,远离股价的筹码是不太活跃的。活跃筹码的数值很小时是很值得注意的一种情况。比如,一只股票经过漫长的下跌后,活跃筹码的值很小(小于10),大部分筹码都处于被套较深的状态,这时多数持股者已经不愿意割肉出局了,所以这时候往往能成为一个较好的买入点;再比如:一只股票经过一段时间的上涨,活跃筹码很小(小于10),大部分筹码都处于获利较多的状态,如果这时控盘强弱的值较大(大于20),前期有明显的庄股特征,总体涨幅不太大,也能成为一个较好的买入点。所以,在股价运行到不同的阶段时,考虑一下活跃筹码的多少,能起到很好的辅助效果。
筹码理论的股价周期阐述
股价走势循环周期的四个阶段
A阶段:无穷成本均线由向下到走平;俗称筑底阶段;
B阶段:无穷成本均线由走平到向上;俗称拉升阶段,可称为上升阶段;
C阶段:无穷成本均线由向上到走平;俗称作头(顶)阶段;
D阶段:无穷成本均线由走平到向下;俗称派发阶段,可称作下降阶段;
1、筹码的价位分布计算
instruments = ['601700.SHA'] #这里尽量包含从上市日期开始到最后的数据 df = D.history_data(instruments, start_date='2005-01-02', end_date='2018-07-04', fields=['open','close','adjust_factor','turn','volume']) #获取历史数据 df['real_close']=df['close']/df['adjust_factor']#获取真实收盘价 df['real_open']=df['open']/df['adjust_factor']#获取真实开盘价 df['turn']=df['turn']/100#获取换手率 df['avg_price']=np.round(df['real_close']+df['real_open'])/2#计算每日平均成本,这里按照0.5元一个价位做分析 df=df.sort_values(by='date',ascending=False).reset_index(drop=True)#日期按降序排列 df['turn_tomo']=df['turn'].shift(1) #计算明日的换手率 df['remain_day']=1-df['turn_tomo'] #计算当日的剩余筹码比例 #假设N日后,上市第一天的剩余筹码比率就是每日剩余比例的累乘即:剩余筹码比例=(1-明天换手率)*(1-后日换手率)*...*(1-最新日换手率),以此类推各日的剩余筹码 df['remain_his']=df['remain_day'].cumprod()*df['turn'] df['remain_his']=df['remain_his'].fillna(df['turn'])#最新一日的筹码就是当日的换手率
#关键统计,统计最后一天的各价位历史筹码堆积量(百分比) ss=df.groupby('avg_price')[['remain_his']].sum().rename(columns={'remain_his':'筹码量'}) ss.head(10)
筹码量 | |
---|---|
avg_price | |
3.5 | 0.060804 |
4.0 | 0.044996 |
4.5 | 0.120760 |
5.0 | 0.120956 |
5.5 | 0.059544 |
6.0 | 0.149679 |
6.5 | 0.075149 |
7.0 | 0.073177 |
7.5 | 0.069574 |
8.0 | 0.141947 |
#检查一下各价位筹码总和是不是1 ss['筹码量'].sum()
1.0000001
2、筹码理论的Winner指标
#计算end_date时某一价位的获利比例 pp=ss.reset_index() pp[pp.avg_price <=3.5]['筹码量'].sum()
0.06080448
#计算end_date时收盘价的获利比例 pp[pp.avg_price <=df['real_close'].iloc[-1]]['筹码量'].sum()
0.9996914
3、筹码理论的Cost指标
ss['筹码累积量']=ss['筹码量'].cumsum() ss.head()
筹码量 | 筹码累积量 | |
---|---|---|
avg_price | ||
3.5 | 0.060804 | 0.060804 |
4.0 | 0.044996 | 0.105800 |
4.5 | 0.120760 | 0.226561 |
5.0 | 0.120956 | 0.347516 |
5.5 | 0.059544 | 0.407060 |
#给定累计获利比率winner_ratio,计算对应的价位,表示在此价位上winner_ratio的筹码处于获利状态 winner_ratio=0.5 for i in range(len(ss)-1):if ss['筹码累积量'].iloc[i] < winner_ratio and ss['筹码累积量'].iloc[i+1]> winner_ratio:cost=ss.index[i] cost
5.5
4、计算全市场各股票的winner指标
instruments = ['601700.SHA','601699.SHA'] #这里尽量包含从上市日期开始到最后的数据 df = D.history_data(instruments, start_date='2005-01-02', end_date='2018-02-14', fields=['open','close','adjust_factor','turn','volume']) #获取历史数据 df['real_close']=df['close']/df['adjust_factor']#获取真实收盘价 df['real_open']=df['open']/df['adjust_factor']#获取真实开盘价 df['turn']=df['turn']/100 df['avg_price']=np.round(df['real_close']+df['real_open'])/2#计算每日平均成本,这里按照0.5元一个价位做分析 df=df.sort_values(by='date',ascending=False).reset_index(drop=True)#日期按降序排列 df['turn_tomo']=df.groupby('instrument')['turn'].apply(lambda x:x.shift(1)) #计算明日的换手率 df['remain_day']=1-df['turn_tomo'] #计算当日的剩余筹码比例
#假设N日后,上市第一天的剩余筹码比率就是每日剩余比例的累乘即:剩余筹码比例=(1-明天换手率)*(1-后日换手率)*...*(1-最新日换手率),以此类推各日的剩余筹码 df['remain_his']=df.groupby('instrument')['remain_day'].apply(lambda x:x.cumprod()) df['remain_his']=df['remain_his']*df['turn'] df['remain_his']=df['remain_his'].fillna(df['turn'])#最新一日的筹码就是当日的换手率
#关键统计,统计最后一天的各价位历史筹码堆积量(百分比) ss=df.groupby(['instrument','avg_price'])[['remain_his']].sum().rename(columns={'remain_his':'筹码量'}).reset_index()
real_close=df.groupby('instrument')[['real_close']].apply(lambda x:x.iloc[0]).reset_index() pp=ss.merge(real_close,on='instrument') #计算end_date时收盘价的获利比例 winner=pp[pp.avg_price<=pp.real_close].groupby('instrument')[['筹码量']].sum().rename(columns={'筹码量':'winner'}) winner
winner | |
---|---|
instrument | |
601699.SHA | 0.639122 |
601700.SHA | 0.817013 |
#检查各股票各价位的筹码总和是否为1 ss.groupby('instrument')['筹码量'].sum()
instrument 601699.SHA 1.0 601700.SHA 1.0 Name: 筹码量, dtype: float32
计算全市场各股票每日的winner指标
instruments = ['601700.SHA','601699.SHA'] #这里尽量包含从上市日期开始到最后的数据 df_all = D.history_data(instruments, start_date='2005-01-02', end_date='2018-02-14', fields=['open','close','adjust_factor','turn','volume']) #获取历史数据
def cal_winner_day(df_all):winner=[]for k in list(df_all.date):df=df_all[df_all.date<=k]df['real_close']=df['close']/df['adjust_factor']#获取真实收盘价df['real_open']=df['open']/df['adjust_factor']#获取真实开盘价df['turn']=df['turn']/100#获取换手率df['avg_price']=np.round(df['real_close']+df['real_open'])/2#计算每日平均成本,这里按照0.5元一个价位做分析df=df.sort_values(by='date',ascending=False).reset_index(drop=True)#日期按降序排列df['turn_tomo']=df['turn'].shift(1)#计算明日的换手率df['remain_day']=1-df['turn_tomo'] #计算当日的剩余筹码比例#假设N日后,上市第一天的剩余筹码比率就是每日剩余比例的累乘即:剩余筹码比例=(1-明天换手率)*(1-后日换手率)*...*(1-最新日换手率),以此类推各日的剩余筹码df['remain_his']=df['remain_day'].cumprod()df['remain_his']=df['remain_his']*df['turn']df['remain_his']=df['remain_his'].fillna(df['turn'])#最新一日的筹码就是当日的换手率#关键统计,统计最后一天的各价位历史筹码堆积量(百分比)ss=df.groupby('avg_price')[['remain_his']].sum().rename(columns={'remain_his':'筹码量'}).reset_index()ss['real_close']=df['real_close'].iloc[0]#计算end_date时收盘价的获利比例winner_day=ss[ss.avg_price<=ss.real_close]['筹码量'].sum()winner.append(winner_day)result=pd.DataFrame({'winner':winner},index=df_all.date)return result
winner_all=df_all.groupby('instrument').apply(cal_winner_day)
winner_all.reset_index().sort_values(by='date',ascending=False).head()
instrument | date | winner | |
---|---|---|---|
4497 | 601700.SHA | 2018-02-14 | 0.817013 |
2773 | 601699.SHA | 2018-02-14 | 0.639122 |
2772 | 601699.SHA | 2018-02-13 | 0.518967 |
4496 | 601700.SHA | 2018-02-13 | 0.816618 |
2771 | 601699.SHA | 2018-02-12 | 0.530768 |
相关文章:
量化交易:筹码理论的探索-筹码分布计算的实现
前言 很多朋友习惯了同花顺、大智慧等看盘软件,经常问到筹码分布如何计算。 说起来筹码分布的理论在庄股时代堪称是一个划时代产品,虽然历经level2数据、资金流统计、拆单算法与反拆单算法等新型技术的变革,庄股时代也逐渐淡出市场…...
常用Redis的键命令参考
一、DEL DEL key [key …] 删除给定的一个或多个 key 。 不存在的 key 会被忽略。 #删除单个键127.0.0.1:6379> set name zhangsan OK 127.0.0.1:6379> del name (integer) 1# 删除一个不存在的 key, 失败,没有 key 被删除127.0.0.1:6379> E…...
Lombok @With 的纯弊端及如何避免
由于是第一篇写关于 Lombok 的日志,所以有些不情愿去开门见山直接触及 With, 而要先提一提本人对 Lombok 的接触过程。 两三年之前写 Java 代码一直都是全手工打造。一个数据类,所有必须的 setter/getter, toString, hashcode() 等全体现在源代码中&…...
C语言每日一题(38)无重复字符的最长字串
力扣 3 无重复字符的最长字串 题目描述 给定一个字符串 s ,请你找出其中不含有重复字符的 最长子串 的长度。 示例 1: 输入: s "abcabcbb" 输出: 3 解释: 因为无重复字符的最长子串是 "abc",所以其长度为 3。示例 2: 输入: s…...

Azure Machine Learning - Azure可视化图像分类操作实战
目录 一、数据准备二、创建自定义视觉资源三、创建新项目四、选择训练图像五、上传和标记图像六、训练分类器七、评估分类器概率阈值 八、管理训练迭代 在本文中,你将了解如何使用Azure可视化页面创建图像分类模型。 生成模型后,可以使用新图像测试该模型…...

PaddleOCR学习笔记
Paddle 功能特性 PP-OCR系列模型列表 https://github.com/PaddlePaddle/PaddleOCR#%EF%B8%8F-pp-ocr%E7%B3%BB%E5%88%97%E6%A8%A1%E5%9E%8B%E5%88%97%E8%A1%A8%E6%9B%B4%E6%96%B0%E4%B8%AD PP-OCR系列模型列表(V4,2023年8月1日更新) 配置文…...

安卓用SQLite数据库存储数据
什么是SQLite? SQLite是安卓中的轻量级内置数据库,不需要设置用户名和密码就可以使用。资源占用较少,运算速度也比较快。 SQLite支持:null(空)、integer(整形)、real(小…...

MMFN-AL
MMFN means ‘multi-modal fusion network’ 辅助信息 作者未提供代码...

7、独立按键控制LED状态
按键的抖动 对于机械开关,当机械触点断开、闭合时,由于机械触点的弹性作用,一个开关在闭合时不回马上稳定地接通,在断开时也不会一下子断开,所以在开关闭合及断开的瞬间会伴随一连串的抖动 #include <REGX52.H…...

香蕉派BPI-M4 Zero单板计算机采用全志H618,板载2GRAM内存
Banana Pi BPI-M4 Zero 香蕉派 BPI-M4 Zero是BPI-M2 Zero的最新升级版本。它在性能上有很大的提高。主控芯片升级为全志科技H618 四核A53, CPU主频提升25%。内存升级为2G LPDDR4,板载8G eMMC存储。它支持5G WiFi 和蓝牙, USB接口也升级为type-C。 它具有与树莓派 …...
微信小程序内部跳到外部小程序
要在微信小程序中跳转到外部小程序,可以使用wx.navigateToMiniProgram函数。以下是一个示例: wx.navigateToMiniProgram({appId: 外部小程序的appId,path: 外部小程序的路径,extraData: {id: xxx},success(res) {// 跳转成功} })在这个示例中࿰…...
Spring Boot中设置文件上传大小限制
在Spring Boot中,可以通过以下步骤来设置上传文件的大小: 在application.properties或application.yml文件中,添加以下配置: 对于application.properties: spring.servlet.multipart.max-file-size128MB spring.se…...
8、独立按键控制LED显示二进制
独立按键控制LED显示二进制 #include <REGX52.H>void Delay(unsigned int xms) //12.000MHz {unsigned char i, j;while(xms--){i 2;j 239;do{while (--j);} while (--i);} }void main() {//数据类型刚好是8位与51单片机IO口寄存器位数相同(默认高电平&am…...

命名空间、字符串、布尔类型、nullptr、类型推导
面向过程语言:C ——> 重视求解过程 面向对象语言:C ——> 重视求解的方法 面向对象的三大特征:封装、继承和多态 C 和 C 在语法上的区别 1、命名空间(用于解决命名冲突问题) 2、函数重载和运算符重载…...

力控软件与多台PLC之间ModbusTCP/IP无线通信
Modbus TCP/IP 是对成熟的 Modbus 协议的改编, 因其开放性、简单性和广泛接受性而在工业自动化系统中发挥着举足轻重的作用。它作为连接各种工业设备的通用通信协议,包括可编程逻辑控制器 (PLC)、远程终端单元 (RTU) 和传感器。它提供标准化的 TCP 接口&…...

第96步 深度学习图像目标检测:FCOS建模
基于WIN10的64位系统演示 一、写在前面 本期开始,我们继续学习深度学习图像目标检测系列,FCOS(Fully Convolutional One-Stage Object Detection)模型。 二、FCOS简介 FCOS(Fully Convolutional One-Stage Object D…...
常用的git命令完整详细109条
Git是一个很强大的分布式版本控制系统,以下是一些常用的git命令: git init:在当前目录下创建一个新的Git仓库。git add 文件名:将指定的文件添加到暂存区,准备提交。git commit -m “备注”:提交暂存区的文…...
Ansible的错误处理
环境 管理节点:Ubuntu 22.04控制节点:CentOS 8Ansible:2.15.6 ignore_errors 使用 ignore_errors: true 来让Ansible忽略错误(运行结果是 failed ): --- - hosts: alltasks:- name: task1shell: cat /t…...

MySQL-04-InnoDB存储引擎锁和加锁分析
Latch一般称为闩锁(轻量级锁),因为其要求锁定的时间必须非常短。在InnoDB存储引擎中,latch又分为mutex(互斥量)和rwlock(读写锁)。 Lock的对象是事务,用来锁定的是…...

tcp/ip协议2实现的插图,数据结构2 (19 - 章)
(68) 68 十九1 选路请求与消息 函rtalloc,rtalloc1,rtfree (69) 69 十九2 选路请求与消息 函rtrequest (70)...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...

R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

Linux部署私有文件管理系统MinIO
最近需要用到一个文件管理服务,但是又不想花钱,所以就想着自己搭建一个,刚好我们用的一个开源框架已经集成了MinIO,所以就选了这个 我这边对文件服务性能要求不是太高,单机版就可以 安装非常简单,几个命令就…...

VisualXML全新升级 | 新增数据库编辑功能
VisualXML是一个功能强大的网络总线设计工具,专注于简化汽车电子系统中复杂的网络数据设计操作。它支持多种主流总线网络格式的数据编辑(如DBC、LDF、ARXML、HEX等),并能够基于Excel表格的方式生成和转换多种数据库文件。由此&…...

数据结构第5章:树和二叉树完全指南(自整理详细图文笔记)
名人说:莫道桑榆晚,为霞尚满天。——刘禹锡(刘梦得,诗豪) 原创笔记:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 上一篇:《数据结构第4章 数组和广义表》…...

基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)
引言 在嵌入式系统中,用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例,介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单,执行相应操作,并提供平滑的滚动动画效果。 本文设计了一个…...
Java多线程实现之Runnable接口深度解析
Java多线程实现之Runnable接口深度解析 一、Runnable接口概述1.1 接口定义1.2 与Thread类的关系1.3 使用Runnable接口的优势 二、Runnable接口的基本实现方式2.1 传统方式实现Runnable接口2.2 使用匿名内部类实现Runnable接口2.3 使用Lambda表达式实现Runnable接口 三、Runnabl…...