当前位置: 首页 > news >正文

大语言模型概述(三):基于亚马逊云科技的研究分析与实践

上期介绍了基于亚马逊云科技的大语言模型相关研究方向,以及大语言模型的训练和构建优化。本期将介绍大语言模型训练在亚马逊云科技上的最佳实践。

大语言模型训练在亚马逊云科技上的最佳实践

本章节内容,将重点关注大语言模型在亚马逊云科技上的最佳训练实践。大致分为五大方面:

计算(Compute) — Amazon SageMaker Training

存储(Storage) — 可以通过两种方式完成数据加载和检查点(checkpointing)配置:Amazon FSx Lustre 文件系统或Amazon S3

并行化(Parallelism)— 选择分布式训练库对于正确使用 GPU 至关重要。我们建议使用经过云优化的库,例如 SageMaker 分片数据并行处理,但自管理库和开源库也可以使用

联网(Networking) — 确保 EFA 和 NVIDA的 GPUDirectRDMA已启用,以实现快速的机器间通信

弹性(Resiliency) — 在大规模情况下,可能会发生硬件故障。我们建议定期写入检查点(checkpointing)

以下我们会简单介绍下大语言模型训练并行化(Parallelism)在亚马逊云科技上的最佳实践。

大语言模型训练的并行化(Training Parallelism)

大语言模型通常有数十到数千亿个参数,这使得它们无法容纳在单个 GPU 卡中。大语言模型领域目前已有多个训练分布式计算的开源库,例如:FSDP、DeepSpeed 和 Megatron。你可以在 Amazon SageMaker Training 中直接运行这些库,也可以使用 Amazon SageMaker 分布式训练库,这些库已经针对亚马逊云进行了优化,可提供更简单的开发人员体验。

因此,在大语言模型领域的开发人员,在亚马逊云科技上目前有两种选择:

在 Amazon SageMaker 上使用优化过的分布式库进行分布式训练;

自己来管理分布式训练。

以下将概述如何在 Amazon SageMaker 上,使用优化过的分布式库进行分布式训练。

为了提供更好的分布式训练性能和可用性,Amazon SageMaker Training 提出了几种专有扩展来扩展 TensorFlow 和 PyTorch 训练代码。在真实场景里,大语言模型的训练通常以多维度并行(3D-parallelism)的方式在进行:

数据并行(data parallelism):可拆分训练小批次并将其馈送到大语言模型的多个相同副本,以提高处理速度

流水线并行(pipeline parallelism):将大语言模型的各个层归因于不同的 GPU 甚至实例,以便将大语言模型的大小扩展到单个 GPU 和单个服务器以外

Tensor 并行(tensor parallelism):将单个层拆分为多个 GPU,通常位于同一服务器内,以将单个层扩展到超过单个 GPU 的大小

以下示例图,展示了如何在具有 8*k*3 个 GPU(每台服务器 8 个 GPU)的 k*3 服务器集群上训练 6 层模型。数据并行度为 k,流水线并行度为 6,张量并行度为 4。集群中的每个 GPU 包含模型层的四分之一,完整模型分为三台服务器(总共 24 个 GPU)。

其中和大语言模型特别相关的分布式实践包括:

Amazon SageMaker 分布式模型并行 — 该库使用图形分区生成针对速度或内存进行了优化的智能大语言模型分区。Amazon SageMaker 分布式模型并行提供了最新、最好的大语言模型训练优化,包括数据并行、流水线并行、张量并行、优化器状态分片、激活检查点和卸载。

Amazon SageMaker 分片数据并行——在 MiCS: Near-linear Scaling for Training Gigantic Model on Public Cloud 论文中,引入了一种新的模型并行策略,该策略仅在数据并行组上划分模型,而不是整个集群。借助 MiCS,亚马逊云科技的科学家们能够在每个 GPU 上实现 176 万亿次浮点运算(理论峰值的 56.4%),从而在 EC2 P4de 实例上训练 210 层、1.06 万亿个参数的大语言模型。作为 Amazon SageMaker 并行共享数据,MIC 现已能够向 Amazon SageMaker Training 客户提供。

Amazon SageMaker 分布式训练库提供高性能和更简单的开发者体验。开发人员无需编写和维护自定义的并行进程启动器,或使用特定于框架的启动工具,因为并行启动器已经内置在 Amazon SageMaker 的任务启动 SDK 之中。

与传统分布式训练相比,大语言模型的微调通常不仅要求数据并行,数据并行和模型并行需要同时进行。Amazon SageMaker Model Parallelism 在易用性和稳定性 (OOM) 上与开源自建方案(如 DeepSpeed)相比具有核心竞争优势。对于基于哪些大语言模型进行具体微调、具体最佳实践等技术细节,你还可以咨询亚马逊云科技的解决方案架构师团队,获得更进一步的技术支持和专业建议。

总结

本期文章我们一起探讨大语言模型的发展历史、语料来源、数据预处理流程策略、训练使用的网络架构、最新研究方向分析(LLaMA、PaLM-E 等),以及在亚马逊云科技上进行大语言模型训练的一些最佳落地实践等。

相关文章:

大语言模型概述(三):基于亚马逊云科技的研究分析与实践

上期介绍了基于亚马逊云科技的大语言模型相关研究方向,以及大语言模型的训练和构建优化。本期将介绍大语言模型训练在亚马逊云科技上的最佳实践。 大语言模型训练在亚马逊云科技上的最佳实践 本章节内容,将重点关注大语言模型在亚马逊云科技上的最佳训…...

键入网址到网页显示,期间发生了什么?

文章目录 键入网址到网页显示,期间发生了什么?1. HTTP2. 真实地址查询 —— DNS3. 指南好帮手 —— 协议栈4. 可靠传输 —— TCP5. 远程定位 —— IP6. 两点传输 —— MAC7. 出口 —— 网卡8. 送别者 —— 交换机9. 出境大门 —— 路由器10. 互相扒皮 —…...

深度学习基于Python+TensorFlow+Django的水果识别系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介简介技术组合系统功能使用流程 二、功能三、系统四. 总结 一项目简介 # 深度学习基于PythonTensorFlowDjango的水果识别系统介绍 简介 该水果识别系统基于…...

vs动态库生成过程中还存在静态库

为什么VS生成动态库dll同时还会生成lib静态库 动态库与静态库(Windows环境下) ​ 动态库和静态库都是一种可执行代码的二进制形式,可以被操作系统载入内存执行。 ​ 静态库实际上是在链接时被链接到exe的,编译后,静态…...

P13 C++ 类 | 结构体内部的静态static

目录 01 前言 02 类内部创建静态变量的例子 03 在类的内部创建静态变量的作用 04 最后的话 01 前言 本期我们讨论 static 在一个类或一个结构体中的具体情况。 在几乎所有面向对象的语言中,静态在一个类中意味着特定的东西。这意味着在类的所有实例中&#xff…...

【腾讯云云上实验室-向量数据库】Tencent Cloud VectorDB在实战项目中替换Milvus测试

为什么尝试使用Tencent Cloud VectorDB替换Milvus向量库? 亮点:Tencent Cloud VectorDB支持Embedding,免去自己搭建模型的负担(搭建一个生产环境的模型实在耗费精力和体力)。 腾讯云向量数据库是什么? 腾…...

git clone -mirror 和 git clone 的区别

目录 前言两则区别git clone --mirrorgit clone 获取到的文件有什么不同瘦身仓库如何选择结语开源项目 前言 Git是一款强大的版本控制系统,通过Git可以方便地管理代码的版本和协作开发。在使用Git时,常见的操作之一就是通过git clone命令将远程仓库克隆…...

基于51单片机的公交自动报站系统

**单片机设计介绍, 基于51单片机的公交自动报站系统 文章目录 一 概要公交自动报站系统概述工作原理应用与优势 二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 很高兴为您介绍基于51单片机的公交自动报站系统: 公交自动报…...

NextJS开发:Image组件的使用及缺陷

Next.js 中的 Image 组件相比于传统的 img 标签有以下几个优点: 懒加载:Image 组件自带懒加载,当页面滚动到 Image 组件所在位置时才会加载图片,从而加快页面的渲染速度。自动优化:Image 组件会自动将图片压缩、转换格…...

网络安全面试经历

2023-11-22 X亭安全服务实习生面试 一面: 工作方向:偏蓝队 总结:实习蓝队面试没有什么难度,没有什么技术上的细节问题,之前准备的细节问题没有考 最后和面试官聊了聊对网安的认识,聊了聊二进制的知识…...

Rust语言入门教程(四) - 数据类型

标量类型(Scalar Types) 在Rust中,一共有4中标量类型, 也就是基本数据类型,分别是: 整型(Integers)浮点型(Floats)布尔型(Boolean)字符型(Chara…...

华为云人工智能入门级开发者认证学习笔记

人工智能入门级开发者认证 人工智能定义 定义 人工智能 (Artificial Intelligence) 是研究、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 强人工智能 vs 弱人工智能 强人工智能:强人工智能观点认为有可能制造出真正能推理&#xff08…...

腾讯云发布新一代基于AMD处理器的星星海云服务器实例SA5

基础设施的硬实力,愈发成为云厂商的核心竞争力。 11月24日,腾讯云发布了全新一代星星海服务器。基于自研服务器的高密设计与硬件升级,对应云服务器SA5是全球首家搭载第四代AMD EPYC处理器(Bergamo)的公有云实例&#…...

算法通关村-----数论问题解析

最大公约数和最小公倍数 概念描述 最大公约数(GCD)是指两个或多个整数共有约数中的最大值。 最小公倍数(LCM)是指两个或多个整数共有的倍数中的最小值 方法介绍 碾转相除法 一种用于计算两个整数的最大公约数(GCD…...

wpf prism当中 发布订阅 IEventAggregator

先订阅后发布 private readonly IEventAggregator _eventAggregator; public LoginViewModel(ILoginService iloginService, IEventAggregator eventAggregator) {_iloginService iloginService;_eventAggregator eventAggregator;_eventAggregator.GetEvent<MessageEven…...

Angular中的getter函数

Angular 中的 getter 函数每次被调用时会返回一个新对象时&#xff0c;这些新对象并不使用同一个堆内存。详细解释一下&#xff1a; Getter 函数的作用是获取某个属性的值。在 Angular 中&#xff0c;getter 函数通常用于获取响应式数据&#xff08;例如 Observables 或 Signal…...

Python----函数的数据 拆包(元组和字典)

Python拆包&#xff1a; 就是把元组或字典中的数据单独的拆分出来&#xff0c;然后赋予给其他的变量。 拆包: 对于函数中的多个返回数据, 去掉 元组, 列表 或者字典 直接获取里面数据的过程。 元组的拆包过程 def func():# 经过一系列操作返回一个元组return 100, 200 …...

vim翻页快捷键

Vim翻页 整页 Ctrlf向下翻页&#xff0c;下一页&#xff0c;相当于Page DownCtrlb向上翻页&#xff0c;上一页&#xff0c;相当于Page Up 半页 Ctrld向下半页&#xff0c;下一半页&#xff0c;光标下移Ctrlu向上半页&#xff0c;上衣半页&#xff0c;光标上移 按行 Ctrle…...

死锁是什么?死锁是如何产生的?如何破除死锁?

1. 死锁是什么 多个线程同时被阻塞&#xff0c;它们中的一个或者全部都在等待某个资源被释放。由于线程被无限期地阻塞&#xff0c;因此程序不可能正常终止。 2. 死锁的三种典型情况 一个线程, 一把锁, 是不可重入锁, 该线程针对这个锁连续加锁两次, 就会出现死锁. 两个线程…...

给虚拟机配置静态id地址

1.令人头大的原因 当连接虚拟机的时候 地址不一会就改变&#xff0c;每次都要重新输入 2.配置虚拟机静态id地址 打开命令窗口执行 : vim /etc/sysconfig/network-scripts/ifcfg-ens33 按下面操作修改 查看自己子网掩码 3.重启网络 命令行输入 systemctl restart netwo…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)

引言&#xff1a;为什么 Eureka 依然是存量系统的核心&#xff1f; 尽管 Nacos 等新注册中心崛起&#xff0c;但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制&#xff0c;是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

HDFS分布式存储 zookeeper

hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架&#xff0c;允许使用简单的变成模型跨计算机对大型集群进行分布式处理&#xff08;1.海量的数据存储 2.海量数据的计算&#xff09;Hadoop核心组件 hdfs&#xff08;分布式文件存储系统&#xff09;&a…...

在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案

这个问题我看其他博主也写了&#xff0c;要么要会员、要么写的乱七八糟。这里我整理一下&#xff0c;把问题说清楚并且给出代码&#xff0c;拿去用就行&#xff0c;照着葫芦画瓢。 问题 在继承QWebEngineView后&#xff0c;重写mousePressEvent或event函数无法捕获鼠标按下事…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...