逆矩阵相关性质与例题
1.方阵的行列式:就是将方阵中的每一个元素转换至行列式中。
1.性质一:转置方阵的行列式等于转置前的行列式。(对标性质:行列式与它的转置行列式相等)
2.性质二:|ka|=|a|*k的n次方,n为方阵阶数。
2.伴随矩阵(只有方阵有):计算矩阵的每一个元素的代数余子式,注意-1乘行标加列标,然后每一行的代数余子式按列排放构成矩阵(按行求按列放)(矩阵A的伴随矩阵为A*)
1.AA*=A*A=|A|E(对标性质:某行乘本行代数余子式为行列式的值,乘其他行的等于0)
单位矩阵:主对角线元素都为1其余都为0的方阵
2.任给方阵都有伴随矩阵
3.|A*A|=|A|*|A*|=|A|的n次方(n为阶数),也可写作|A*|=|A|的n-1次方,为左右两边约去A的行列式,一般不能除以行列式,但此处例外
证明过程:
3.逆矩阵:n阶方阵A,存在n阶方阵B使得AB=BA=E,则B为A的逆矩阵,逆矩阵的表示为A的-1次方
1.不是所有的方阵都可逆,比如0矩阵
2.方阵的逆矩阵是为一的,证明过程:
3.A可逆,A的逆矩阵可逆且它的逆矩阵为A(证明用定义然后代换)
4.如果要验证逆矩阵,需要将两个矩阵相乘=E然后配凑
5.A,B都可逆,则AB可逆,且AB的逆矩阵为B的逆矩阵乘A的逆矩阵,注意顺序,证明时写定义式并消去B*B的逆矩阵,当多个矩阵相乘也可以用(类似AB的转置等于B的转置乘A的转置)
6.A可逆其转置也可逆,且A转置的逆等于A逆的转置(转置与逆可以交换顺序)
7.k不等于0,那么kA的逆矩阵等于k分之一乘A的逆矩阵
8,A可逆,A逆的行列式等于A的行列式分之一
9.A可逆,A*可逆,等于A的行列式分之一乘A
4.方阵可逆的条件:行列式不等于0,求法为A的行列式分之一乘A的伴随矩阵,同理A的伴随矩阵等于A的行列式乘A的逆矩阵,运用此求法去代替逆矩阵进行运算时注意A不能为0矩阵
5.做题时只需使用AB=E即可证明A可逆且A的逆矩阵为B
6.在方程中消去一个矩阵可以同时左乘或者右乘它的逆矩阵出现E直接消去
7.求逆矩阵有初等变换法以及伴随矩阵法,首选前者
8.经典例题1
9.经典例题2
例题2总结:
1.提的时候要注意方向
2.矩阵不能同除
3.任何矩阵与数运算都要乘E
4.写任何逆矩阵时都要先证明矩阵可逆
10.经典例题3
相关文章:

逆矩阵相关性质与例题
1.方阵的行列式:就是将方阵中的每一个元素转换至行列式中。 1.性质一:转置方阵的行列式等于转置前的行列式。(对标性质:行列式与它的转置行列式相等) 2.性质二:|ka||a|*k的n次方,n为方阵阶数。 …...
Ruoyi项目传List到后台并使用Excel模板下载数据的方法以及遇到的各种前后端数据交互问题
import { download } from @/utils/requestconst app = createApp(App)// 全局方法挂载 app.config.globalProperties.download = download 首先因为ruoyi-ui中的main.js有配置如上全局注册: 因此只需要在vue中定义一个方法直接使用this.download调用下载即可: (download的3…...

区块链技术将如何影响未来的数字营销?
你是否听腻了区块链和数字营销等流行语,却不明白它们对未来意味着什么?那么,准备好系好安全带吧,因为区块链技术将彻底改变我们对数字营销的看法。从建立消费者信任到提高透明度和效率,其可能性是无限的。 让我们来探…...
小程序wx:if和hidden的区别?
wx:if:wx:if 是一个完整的条件渲染指令,当它的表达式为真时,才会渲染该指令所在的元素。如果表达式的值为假,则不会渲染该元素。这意味着在表达式为假时,该元素及其子元素都不会被渲染,就像它们从未存在过一…...
分布式幂等
分布式幂等 在分布式系统、网络通信和数据库操作中,幂等性是一个非常重要的概念,特别是在面对可能发生网络故障、消息重复、或者系统崩溃等情况时。 举个简单的例子,考虑一个银行转账的操作。如果转账操作是幂等的,那么无论你执…...

大数据 DataX-Web 详细安装教程
目录 一、DataX-Web 介绍 1.1 DataX-Web 是什么 1.2 DataX-Web 架构 二、DataX-Web 安装部署 2.1 环境要求 2.2 安装 2.3 部署 2.4 数据库初始化 2.5 配置 2.6 启动服务 2.6.1 一键启动所有服务 2.6.2 一键取消所有服务 2.7 查看服务(注意!…...
CSS3媒体查询实现不同宽度的下不同内容的展示
文章目录 前言CSS3 多媒体查询实例520 到 699px 宽度 - 添加邮箱图标700 到 1000px - 添加文本前缀信息大于 1001px 宽度 - 添加邮件地址大于 1151px 宽度 - 添加图标代码后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:CSS ὃ…...

使用 STM32 读取和解析 NTC 热敏电阻的数值
本文介绍了如何利用 STM32 微控制器读取和解析 NTC(Negative Temperature Coefficient)热敏电阻的数值。首先,我们将简要介绍 NTC 热敏电阻的原理和特性。接下来,我们将详细讨论如何设计电路连接和采用合适的 STM32 外设进行数值读…...

C#,数值计算——有理函数插值和外推(Rational_interp)的计算方法与源程序
1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 有理函数插值和外推 /// Rational Function Interpolation and Extrapolation /// Given a value x, and using pointers to data xx and yy, this routine returns …...

力扣283:移动零(JAVA)
题目描述: 意思是将所有0移到最后的同时其余非0元素位置仍然不变 如 1 2 0 5 2 0 经过移动零后变为 1 2 5 2 0 0 思路:使用双指针的思路来写 fast:从左往右遍历数组 slow:非零元素最后的一个位置 将数组分为3个区间 [0,slow]为处理好的非0数据,slow永远指向最后一个非0数据 [s…...
【statsmodels】快速实现回归预测
python 做线性回归分析有好几种方式,常要的是 scipy 包,statsmodels 包,以及 sklearn包。 但是个人比较喜欢使用statsmodel进行线性回归,一是其可以更好的呈现回归效果,二是其能够自动跳过缺失值。 sklearn则不能方便…...
Kubernetes异常排查方式
集群信息: 1. 显示 Kubernetes 版本:kubectl version 2. 显示集群信息:kubectl cluster-info 3. 列出集群中的所有节点:kubectl get nodes 4. 查看一个具体的节点详情:kubectl describe node <node-name> 5. 列…...

【Linux】:信号的产生
信号 一.前台进程和后台进程1.前台进程2。后台进程3.总结 二.自定义信号动作接口三.信号的产生1.键盘组合键2.kill信号进程pid3.系统调用1.kill函数2.raise函数3.abort函数 四.异常五.软件条件六.通过终端按键产生信号 一.前台进程和后台进程 1.前台进程 一个简单的代码演示 …...
document load 和 document ready 的区别
"document load" 和 "document ready" 都是 JavaScript 中用于处理文档加载事件的术语,但是它们之间有一些重要的区别。 document load 在传统的 JavaScript 中,document.load 事件是当整个 HTML 文档完全加载并出现在浏览器中时触…...
flutter与原生Android通信方式之MethodChannel
闲来无事,flutter好久没看了,上次折腾flutter与Android通信没折腾完,有些事情耽搁了,这次继续 演示效果: flutter与Android原生通信 flutter端 import package:flutter/cupertino.dart; import package:flutter/mater…...

[PyTorch][chapter 66][强化学习-值函数近似]
前言 现实强化学习任务面临的状态空间往往是连续的,无穷多个。 这里主要针对这种连续的状态空间处理。后面DQN 也是这种处理思路。 目录: 1: 原理 2: 梯度更新 3: target 和 预测值 4 流程 一 原理 强化学习最重要的是得到 …...

hdlbits系列verilog解答(Exams/m2014 q4e)-46
文章目录 一、问题描述二、verilog源码三、仿真结果 一、问题描述 实现以下电路: 二、verilog源码 module top_module (input in1,input in2,output out);assign out ~(in1 | in2);endmodule三、仿真结果 转载请注明出处!...
小程序如何实现下拉刷新?
一、全局下拉刷新 在app.json的window节点中,将enablePullDownRefresh设置为true; onPullDownRefresh: function () {console.log(下拉刷新);// 在这里编写数据更新的逻辑wx.stopPullDownRefresh(); // 数据更新完成后,调用该方法停止刷新}二…...

二进制数据转换成十六进制表示 binascii.hexlify()
【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 二进制数据转换成十六进制表示 binascii.hexlify() 选择题 binascii.hexlify()参数的数据类型可以是? import binascii number 11 byte_data number.to_bytes() hex_data bin…...
苍穹外卖--店铺营业状态设置
需求分析和设计 1.1.1 产品原型 进到苍穹外卖后台,显示餐厅的营业状态,营业状态分为营业中和打烊中,若当前餐厅处于营业状态,自动接收任何订单,客户可在小程序进行下单操作;若当前餐厅处于打烊状态&#…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

el-switch文字内置
el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
Python爬虫(二):爬虫完整流程
爬虫完整流程详解(7大核心步骤实战技巧) 一、爬虫完整工作流程 以下是爬虫开发的完整流程,我将结合具体技术点和实战经验展开说明: 1. 目标分析与前期准备 网站技术分析: 使用浏览器开发者工具(F12&…...
【决胜公务员考试】求职OMG——见面课测验1
2025最新版!!!6.8截至答题,大家注意呀! 博主码字不易点个关注吧,祝期末顺利~~ 1.单选题(2分) 下列说法错误的是:( B ) A.选调生属于公务员系统 B.公务员属于事业编 C.选调生有基层锻炼的要求 D…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...