当前位置: 首页 > news >正文

C#,数值计算——有理函数插值和外推(Rational_interp)的计算方法与源程序

1 文本格式
 

using System;

namespace Legalsoft.Truffer
{
    /// <summary>
    /// 有理函数插值和外推
    /// Rational Function Interpolation and Extrapolation
    /// Given a value x, and using pointers to data xx and yy, this routine returns
    /// an interpolated value y, and stores an error estimate dy. The returned value
    /// is obtained by mm-point polynomial interpolation on the subrange
    /// xx[jl..jl + mm - 1].
    /// </summary>
    public class Rational_interp : Base_interp
    {
        private double dy { get; set; }

        public Rational_interp(double[] xv, double[] yv, int m) : base(xv, yv[0], m)
        {
            this.dy = 0.0;
        }

        /// <summary>
        /// Given a value x, and using pointers to data xx and yy, this routine returns
        /// an interpolated value y, and stores an error estimate dy. The returned
        /// value is obtained by mm-point diagonal rational function interpolation on
        /// the subrange xx[jl..jl + mm - 1].
        /// </summary>
        /// <param name="jl"></param>
        /// <param name="x"></param>
        /// <returns></returns>
        /// <exception cref="Exception"></exception>
        public override double rawinterp(int jl, double x)
        {
            const double TINY = 1.0e-99;
            int ns = 0;
            double[] c = new double[mm];
            double[] d = new double[mm];
            double hh = Math.Abs(x - xx[jl + 0]);
            for (int i = 0; i < mm; i++)
            {
                double h = Math.Abs(x - xx[jl + i]);
                //if (h == 0.0)
                if (Math.Abs(h) <= float.Epsilon)
                {
                    dy = 0.0;
                    return yy[jl + i];
                }
                else if (h < hh)
                {
                    ns = i;
                    hh = h;
                }
                c[i] = yy[jl + i];
                d[i] = yy[jl + i] + TINY;
            }
            double y = yy[jl + ns--];
            for (int m = 1; m < mm; m++)
            {
                for (int i = 0; i < mm - m; i++)
                {
                    double w = c[i + 1] - d[i];
                    double h = xx[jl + i + m] - x;
                    double t = (xx[jl + i] - x) * d[i] / h;
                    double dd = t - c[i + 1];
                    //if (dd == 0.0)
                    if (Math.Abs(dd) <= float.Epsilon)
                    {
                        throw new Exception("Error in routine ratint");
                    }
                    dd = w / dd;
                    d[i] = c[i + 1] * dd;
                    c[i] = t * dd;
                }
                y += (dy = (2 * (ns + 1) < (mm - m) ? c[ns + 1] : d[ns--]));
            }
            return y;
        }
    }
}
 

2 代码格式

using System;namespace Legalsoft.Truffer
{/// <summary>/// 有理函数插值和外推/// Rational Function Interpolation and Extrapolation/// Given a value x, and using pointers to data xx and yy, this routine returns/// an interpolated value y, and stores an error estimate dy. The returned value/// is obtained by mm-point polynomial interpolation on the subrange/// xx[jl..jl + mm - 1]./// </summary>public class Rational_interp : Base_interp{private double dy { get; set; }public Rational_interp(double[] xv, double[] yv, int m) : base(xv, yv[0], m){this.dy = 0.0;}/// <summary>/// Given a value x, and using pointers to data xx and yy, this routine returns/// an interpolated value y, and stores an error estimate dy. The returned/// value is obtained by mm-point diagonal rational function interpolation on/// the subrange xx[jl..jl + mm - 1]./// </summary>/// <param name="jl"></param>/// <param name="x"></param>/// <returns></returns>/// <exception cref="Exception"></exception>public override double rawinterp(int jl, double x){const double TINY = 1.0e-99;int ns = 0;double[] c = new double[mm];double[] d = new double[mm];double hh = Math.Abs(x - xx[jl + 0]);for (int i = 0; i < mm; i++){double h = Math.Abs(x - xx[jl + i]);//if (h == 0.0)if (Math.Abs(h) <= float.Epsilon){dy = 0.0;return yy[jl + i];}else if (h < hh){ns = i;hh = h;}c[i] = yy[jl + i];d[i] = yy[jl + i] + TINY;}double y = yy[jl + ns--];for (int m = 1; m < mm; m++){for (int i = 0; i < mm - m; i++){double w = c[i + 1] - d[i];double h = xx[jl + i + m] - x;double t = (xx[jl + i] - x) * d[i] / h;double dd = t - c[i + 1];//if (dd == 0.0)if (Math.Abs(dd) <= float.Epsilon){throw new Exception("Error in routine ratint");}dd = w / dd;d[i] = c[i + 1] * dd;c[i] = t * dd;}y += (dy = (2 * (ns + 1) < (mm - m) ? c[ns + 1] : d[ns--]));}return y;}}
}

相关文章:

C#,数值计算——有理函数插值和外推(Rational_interp)的计算方法与源程序

1 文本格式 using System; namespace Legalsoft.Truffer { /// <summary> /// 有理函数插值和外推 /// Rational Function Interpolation and Extrapolation /// Given a value x, and using pointers to data xx and yy, this routine returns …...

力扣283:移动零(JAVA)

题目描述: 意思是将所有0移到最后的同时其余非0元素位置仍然不变 如 1 2 0 5 2 0 经过移动零后变为 1 2 5 2 0 0 思路:使用双指针的思路来写 fast:从左往右遍历数组 slow:非零元素最后的一个位置 将数组分为3个区间 [0,slow]为处理好的非0数据,slow永远指向最后一个非0数据 [s…...

【statsmodels】快速实现回归预测

python 做线性回归分析有好几种方式&#xff0c;常要的是 scipy 包&#xff0c;statsmodels 包&#xff0c;以及 sklearn包。 但是个人比较喜欢使用statsmodel进行线性回归&#xff0c;一是其可以更好的呈现回归效果&#xff0c;二是其能够自动跳过缺失值。 sklearn则不能方便…...

Kubernetes异常排查方式

集群信息&#xff1a; 1. 显示 Kubernetes 版本&#xff1a;kubectl version 2. 显示集群信息&#xff1a;kubectl cluster-info 3. 列出集群中的所有节点&#xff1a;kubectl get nodes 4. 查看一个具体的节点详情&#xff1a;kubectl describe node <node-name> 5. 列…...

【Linux】:信号的产生

信号 一.前台进程和后台进程1.前台进程2。后台进程3.总结 二.自定义信号动作接口三.信号的产生1.键盘组合键2.kill信号进程pid3.系统调用1.kill函数2.raise函数3.abort函数 四.异常五.软件条件六.通过终端按键产生信号 一.前台进程和后台进程 1.前台进程 一个简单的代码演示 …...

document load 和 document ready 的区别

"document load" 和 "document ready" 都是 JavaScript 中用于处理文档加载事件的术语&#xff0c;但是它们之间有一些重要的区别。 document load 在传统的 JavaScript 中&#xff0c;document.load 事件是当整个 HTML 文档完全加载并出现在浏览器中时触…...

flutter与原生Android通信方式之MethodChannel

闲来无事&#xff0c;flutter好久没看了&#xff0c;上次折腾flutter与Android通信没折腾完&#xff0c;有些事情耽搁了&#xff0c;这次继续 演示效果&#xff1a; flutter与Android原生通信 flutter端 import package:flutter/cupertino.dart; import package:flutter/mater…...

[PyTorch][chapter 66][强化学习-值函数近似]

前言 现实强化学习任务面临的状态空间往往是连续的,无穷多个。 这里主要针对这种连续的状态空间处理。后面DQN 也是这种处理思路。 目录&#xff1a; 1&#xff1a; 原理 2&#xff1a; 梯度更新 3&#xff1a; target 和 预测值 4 流程 一 原理 强化学习最重要的是得到 …...

hdlbits系列verilog解答(Exams/m2014 q4e)-46

文章目录 一、问题描述二、verilog源码三、仿真结果 一、问题描述 实现以下电路&#xff1a; 二、verilog源码 module top_module (input in1,input in2,output out);assign out ~(in1 | in2);endmodule三、仿真结果 转载请注明出处&#xff01;...

小程序如何实现下拉刷新?

一、全局下拉刷新 在app.json的window节点中&#xff0c;将enablePullDownRefresh设置为true&#xff1b; onPullDownRefresh: function () {console.log(下拉刷新);// 在这里编写数据更新的逻辑wx.stopPullDownRefresh(); // 数据更新完成后&#xff0c;调用该方法停止刷新}二…...

二进制数据转换成十六进制表示 binascii.hexlify()

【小白从小学Python、C、Java】 【计算机等考500强证书考研】 【Python-数据分析】 二进制数据转换成十六进制表示 binascii.hexlify() 选择题 binascii.hexlify()参数的数据类型可以是&#xff1f; import binascii number 11 byte_data number.to_bytes() hex_data bin…...

苍穹外卖--店铺营业状态设置

需求分析和设计 1.1.1 产品原型 进到苍穹外卖后台&#xff0c;显示餐厅的营业状态&#xff0c;营业状态分为营业中和打烊中&#xff0c;若当前餐厅处于营业状态&#xff0c;自动接收任何订单&#xff0c;客户可在小程序进行下单操作&#xff1b;若当前餐厅处于打烊状态&#…...

2023金盾杯线上赛-AGRT战队-WP

目录 WEB ApeCoin get_source ezupload easyphp MISC 来都来了 芙宁娜 Honor Crypto 我看看谁还不会RSA hakiehs babyrsa PWN sign-format RE Re1 WEB ApeCoin 扫描发现有源码泄露&#xff0c;访问www.tar.gz得到源码。 在源码中发现了冰蝎马。 Md5解码&am…...

Python面向对象编程——类方法、实例方法和静态方法总结

在Python面向对象编程中&#xff0c;类方法&#xff08;class methods&#xff09;、实例方法&#xff08;instance methods&#xff09;和静态方法&#xff08;static methods&#xff09;是不同类型的方法&#xff0c;它们有一些联系&#xff0c;但也存在一些明显的区别。 类…...

HarmonyOS开发(五):常用基础组件

1、组件介绍 组件&#xff08;Component&#xff09;,是界面搭建及显示的最小单元。 组件根据功能可以分为五大类&#xff1a;基础组件、容器组件、媒体组件、绘制组件、画布组件 2、基础组件 基础组件是视图层的基本组成单元&#xff0c;它包含&#xff1a;Text、Image、T…...

Hive中常出现的错误(不定时更新)

1.加载数据失败 hive> load data local inpath /home/user/hive.txt into table studentl> ; FAILED: SemanticException [Error 10001]: Line 1:56 Table not found studentl hive> load data local inpath /home/user/hive.txt into table student; Loading data to…...

c++ 重写 多态

1 重写(继承后(拼接基类后)) 1.1 非虚函数 同名成员函数 (各自有一个xFunction() 内存 ) #include <iostream> #include <String> class BaseClass { public:void xFunction() {std::cout << "BaseClass::xFunction()\n"; } };class Subclass1 …...

Git如何修改提交(commit)用户名称(user.name)和邮箱(user.email)

Git用户名 Git查看用户名 git config user.name修改Git提交用户名 修改全局Git用户名 git config --global user.name "xx" 修改当前服务/项目Git用户名 git config user.name "xx"如果出现以下错误&#xff0c;解决方案如下&#xff1a; 错误案例&am…...

知行之桥EDI系统HTTP签名验证

本文简要概述如何在知行之桥EDI系统中使用 HTTP 签名身份验证&#xff0c;并将使用 CyberSource 作为该集成的示例。 API 概述 首字母缩略词 API 代表“应用程序编程接口”。这听起来可能很复杂&#xff0c;但真正归结为 API 是一种允许两个不同实体相互通信的软件。自开发以…...

C++ DAY08 异常

概念 异常事件&#xff08;如&#xff1a;除 0 溢出&#xff0c;数组下标越界&#xff0c;所要读取的文件不存在 , 空指针&#xff0c;内存不足 等等&#xff09; 在 C 语言对错误的处理是两种方法&#xff1a; 一是使用整型的返回值标识错误&#xff1b; 二是使用 errn…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

Matlab | matlab常用命令总结

常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年&#xff0c;作为行业领先的3D工业相机及视觉系统供应商&#xff0c;累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成&#xff0c;通过稳定、易用、高回报的AI3D视觉系统&#xff0c;为汽车、新能源、金属制造等行…...

数据库分批入库

今天在工作中&#xff0c;遇到一个问题&#xff0c;就是分批查询的时候&#xff0c;由于批次过大导致出现了一些问题&#xff0c;一下是问题描述和解决方案&#xff1a; 示例&#xff1a; // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址&#xff1a;Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址&#xff08;如 10.244.1.2&#xff09;无特殊名称&#xff1a;在 Kubernetes 中&#xff0c;它通常被称为 “Pod IP” 或 “容器 IP”生命周期&#xff1a;与 Pod …...