当前位置: 首页 > news >正文

C# Onnx 特征匹配 DeDoDe 检测,不描述---描述,不检测

目录

介绍

效果

模型信息

项目

代码 

下载 


介绍

github地址:https://github.com/Parskatt/DeDoDe

DeDoDe 🎶 Detect, Don't Describe - Describe, Don't Detect, for Local Feature Matching

The DeDoDe detector learns to detect 3D consistent repeatable keypoints, which the DeDoDe descriptor learns to match. The result is a powerful decoupled local feature matcher.

Training DeDoDe

DISCLAMER: I've (Johan) not yet tested that the training scripts here reproduces our original results. This repo is very similar to the internal training repo, but there might be bugs introduced by refactoring etc. Let me know if you face any issues reproducing our results (or if you somehow get better results :D).

See experiments for the scripts to train DeDoDe. We trained on a single A100-40GB with a batchsize of 8. Note that you need to do the data prep first, see data_prep.

As usual, we require that you have the MegaDepth dataset already downloaded, and that you have the prepared scene info from DKM.

效果

模型信息

Inputs
-------------------------
name:images
tensor:Float[-1, 3, -1, -1]
---------------------------------------------------------------

Outputs
-------------------------
name:matches_A
tensor:Float[-1, -1]
name:matches_B
tensor:Float[-1, -1]
name:batch_ids
tensor:Int64[-1]
---------------------------------------------------------------

项目

VS2022

.net framework 4.8

OpenCvSharp 4.8

Microsoft.ML.OnnxRuntime 1.16.2

代码 

using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.Drawing;
using static System.Net.Mime.MediaTypeNames;
using System.Numerics;

namespace Onnx_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string image_path2 = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        int inpWidth;
        int inpHeight;

        float[] mean =new float[] { 0.485f, 0.456f, 0.406f };
        float[] std = new float[] { 0.229f, 0.224f, 0.225f };

        Mat image;
        Mat image2;

        string model_path = "";

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> mask_tensor;
        List<NamedOnnxValue> input_ontainer;

        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new System.Drawing.Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            // 创建输出会话
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            model_path = "model/dedode_end2end_1024.onnx";

            inpHeight = 256;
            inpWidth = 256;

            onnx_session = new InferenceSession(model_path, options);

            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            image_path = "test_img/im_A.jpg";
            pictureBox1.Image = new Bitmap(image_path);

            image_path2 = "test_img/im_B.jpg";
            pictureBox3.Image = new Bitmap(image_path2);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            System.Windows.Forms.Application.DoEvents();

            image = new Mat(image_path);
            image2 = new Mat(image_path2);

            float[] input_tensor_data = new float[2 * 3 * inpWidth * inpHeight];

            //preprocess
            Mat dstimg = new Mat();
            Cv2.CvtColor(image, dstimg, ColorConversionCodes.BGR2RGB);
            Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(inpWidth, inpHeight));
            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < inpHeight; i++)
                {
                    for (int j = 0; j < inpWidth; j++)
                    {
                        float pix = ((byte*)(dstimg.Ptr(i).ToPointer()))[j * 3 + c];
                        input_tensor_data[c * inpWidth * inpHeight + i * inpWidth + j] = (float)((pix / 255.0 - mean[c]) / std[c]);
                    }
                }
            }

            Cv2.CvtColor(image2, dstimg, ColorConversionCodes.BGR2RGB);
            Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(inpWidth, inpHeight));
            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < inpHeight; i++)
                {
                    for (int j = 0; j < inpWidth; j++)
                    {
                        float pix = ((byte*)(dstimg.Ptr(i).ToPointer()))[j * 3 + c];
                        input_tensor_data[(3+c )* inpWidth * inpHeight + i * inpWidth + j] = (float)((pix / 255.0 - mean[c]) / std[c]);
                    }
                }
            }

            input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 2, 3, inpHeight, inpWidth });

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_ontainer);
            dt2 = DateTime.Now;

            //Postprocessing
            //将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            float[] matches_A = results_onnxvalue[0].AsTensor<float>().ToArray();
            float[] matches_B = results_onnxvalue[1].AsTensor<float>().ToArray();
            int num_points = results_onnxvalue[0].AsTensor<float>().Dimensions[0];

            List<KeyPoint> points_A = new List<KeyPoint>();
            List<KeyPoint> points_B = new List<KeyPoint>();

            KeyPoint temp;
            for (int i = 0; i < num_points; i++)
            {
                temp = new KeyPoint();
                temp.Pt.X = (float)((matches_A[i * 2] + 1) * 0.5 * image.Cols);
                temp.Pt.Y = (float)((matches_A[i * 2 + 1] + 1) * 0.5 * image.Rows);
                temp.Size = 1f;
                points_A.Add(temp);
            }

            num_points = results_onnxvalue[1].AsTensor<float>().Dimensions[0];
            for (int i = 0; i < num_points; i++)
            {
                temp = new KeyPoint();
                temp.Pt.X = (float)((matches_B[i * 2] + 1) * 0.5 * image2.Cols);
                temp.Pt.Y = (float)((matches_B[i * 2 + 1] + 1) * 0.5 * image2.Rows);
                temp.Size = 1f;
                points_B.Add(temp);
            }

            //匹配结果放在matches里面
            num_points = points_A.Count();
            List<DMatch> matches=new List<DMatch>();
            for (int i = 0; i < num_points; i++)
            {
                matches.Add(new DMatch(i, i, 0f));
            }

            //按照匹配关系将图画出来,背景图为match_img
            Mat match_img = new Mat();
            Cv2.DrawMatches(image, points_A, image2, points_B, matches, match_img);

            pictureBox2.Image = new System.Drawing.Bitmap(match_img.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void button3_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox3.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path2 = ofd.FileName;
            pictureBox3.Image = new System.Drawing.Bitmap(image_path2);
            image2 = new Mat(image_path2);
        }

        private void pictureBox3_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox3.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.Drawing;
using static System.Net.Mime.MediaTypeNames;
using System.Numerics;namespace Onnx_Demo
{public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";string image_path2 = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;int inpWidth;int inpHeight;float[] mean =new float[] { 0.485f, 0.456f, 0.406f };float[] std = new float[] { 0.229f, 0.224f, 0.225f };Mat image;Mat image2;string model_path = "";SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;Tensor<float> mask_tensor;List<NamedOnnxValue> input_ontainer;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path = ofd.FileName;pictureBox1.Image = new System.Drawing.Bitmap(image_path);image = new Mat(image_path);}private void Form1_Load(object sender, EventArgs e){// 创建输入容器input_ontainer = new List<NamedOnnxValue>();// 创建输出会话options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件model_path = "model/dedode_end2end_1024.onnx";inpHeight = 256;inpWidth = 256;onnx_session = new InferenceSession(model_path, options);// 创建输入容器input_ontainer = new List<NamedOnnxValue>();image_path = "test_img/im_A.jpg";pictureBox1.Image = new Bitmap(image_path);image_path2 = "test_img/im_B.jpg";pictureBox3.Image = new Bitmap(image_path2);}private unsafe void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "检测中,请稍等……";pictureBox2.Image = null;System.Windows.Forms.Application.DoEvents();image = new Mat(image_path);image2 = new Mat(image_path2);float[] input_tensor_data = new float[2 * 3 * inpWidth * inpHeight];//preprocessMat dstimg = new Mat();Cv2.CvtColor(image, dstimg, ColorConversionCodes.BGR2RGB);Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(inpWidth, inpHeight));for (int c = 0; c < 3; c++){for (int i = 0; i < inpHeight; i++){for (int j = 0; j < inpWidth; j++){float pix = ((byte*)(dstimg.Ptr(i).ToPointer()))[j * 3 + c];input_tensor_data[c * inpWidth * inpHeight + i * inpWidth + j] = (float)((pix / 255.0 - mean[c]) / std[c]);}}}Cv2.CvtColor(image2, dstimg, ColorConversionCodes.BGR2RGB);Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(inpWidth, inpHeight));for (int c = 0; c < 3; c++){for (int i = 0; i < inpHeight; i++){for (int j = 0; j < inpWidth; j++){float pix = ((byte*)(dstimg.Ptr(i).ToPointer()))[j * 3 + c];input_tensor_data[(3+c )* inpWidth * inpHeight + i * inpWidth + j] = (float)((pix / 255.0 - mean[c]) / std[c]);}}}input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 2, 3, inpHeight, inpWidth });//将 input_tensor 放入一个输入参数的容器,并指定名称input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));dt1 = DateTime.Now;//运行 Inference 并获取结果result_infer = onnx_session.Run(input_ontainer);dt2 = DateTime.Now;//Postprocessing//将输出结果转为DisposableNamedOnnxValue数组results_onnxvalue = result_infer.ToArray();float[] matches_A = results_onnxvalue[0].AsTensor<float>().ToArray();float[] matches_B = results_onnxvalue[1].AsTensor<float>().ToArray();int num_points = results_onnxvalue[0].AsTensor<float>().Dimensions[0];List<KeyPoint> points_A = new List<KeyPoint>();List<KeyPoint> points_B = new List<KeyPoint>();KeyPoint temp;for (int i = 0; i < num_points; i++){temp = new KeyPoint();temp.Pt.X = (float)((matches_A[i * 2] + 1) * 0.5 * image.Cols);temp.Pt.Y = (float)((matches_A[i * 2 + 1] + 1) * 0.5 * image.Rows);temp.Size = 1f;points_A.Add(temp);}num_points = results_onnxvalue[1].AsTensor<float>().Dimensions[0];for (int i = 0; i < num_points; i++){temp = new KeyPoint();temp.Pt.X = (float)((matches_B[i * 2] + 1) * 0.5 * image2.Cols);temp.Pt.Y = (float)((matches_B[i * 2 + 1] + 1) * 0.5 * image2.Rows);temp.Size = 1f;points_B.Add(temp);}//匹配结果放在matches里面num_points = points_A.Count();List<DMatch> matches=new List<DMatch>();for (int i = 0; i < num_points; i++){matches.Add(new DMatch(i, i, 0f));}//按照匹配关系将图画出来,背景图为match_imgMat match_img = new Mat();Cv2.DrawMatches(image, points_A, image2, points_B, matches, match_img);pictureBox2.Image = new System.Drawing.Bitmap(match_img.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}private void button3_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox3.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path2 = ofd.FileName;pictureBox3.Image = new System.Drawing.Bitmap(image_path2);image2 = new Mat(image_path2);}private void pictureBox3_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox3.Image);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}}
}

下载 

源码下载

相关文章:

C# Onnx 特征匹配 DeDoDe 检测,不描述---描述,不检测

目录 介绍 效果 模型信息 项目 代码 下载 介绍 github地址&#xff1a;https://github.com/Parskatt/DeDoDe DeDoDe &#x1f3b6; Detect, Dont Describe - Describe, Dont Detect, for Local Feature Matching The DeDoDe detector learns to detect 3D consisten…...

第十六章 处理空字符串和 Null 值

文章目录 第十六章 处理空字符串和 Null 值空字符串和 Null 值的默认映射导出值控制空元素的形式 第十六章 处理空字符串和 Null 值 类和属性参数 XMLUSEEMPTYELEMENT XMLIGNORENULL XMLNILNOOBJECT XMLNIL 空字符串和 Null 值的默认映射 下表总结了空字符串和 null 值的…...

MYSQL 处理重复数据

文章目录 前言防止表中出现重复数据统计重复数据过滤重复数据删除重复数据在这里插入代码片后言 前言 hello world欢迎来到前端的新世界 &#x1f61c;当前文章系列专栏&#xff1a;Mysql &#x1f431;‍&#x1f453;博主在前端领域还有很多知识和技术需要掌握&#xff0c;正…...

世岩清上:未来科技展览的策展视野

面对科技未来&#xff0c;策展视野的核心在于把握趋势&#xff0c;理解人性&#xff0c;并充分运用科技手段提升观众的体验。以下是我对未来科技展览的策展视野。 一、以人为本的设计理念 科技发展的最终目的是服务于人类&#xff0c;提升人们的生活质量。因此&#xff0c;展…...

如何理解2023vivo开发者大会,使用Rust语言编写蓝河操作系统(BlueOS)?

在2023年vivo开发者大会上&#xff0c;vivo宣布使用Rust语言编写其蓝河操作系统&#xff08;BlueOS&#xff09;。 什么是Rust语言&#xff1f; Rust 是一种开放源代码系统编程语言&#xff0c;可用于开发高效、安全的软件。 使用 Rust 可管理内存并控制其低级详细信息。 但你…...

Android flutter this and base files have different roots

类似经历者 Android build fails with certain plugins if project is in a different drive (from sdk) 错误描述 我是windows系统&#xff0c;下载 flutter sdk 我是放在D盘&#xff0c;flutter项目是放在E盘&#xff0c;flutter 执行 pub get的时候&#xff0c;会在我C盘…...

Excel动态选择某一行/列的最后一个数据

选择列的最后一个数据&#xff1a; 以A列为例&#xff0c;使用&#xff1a; LOOKUP(1,0/(A:A<>""),A:A)选择行的最后一个数据&#xff1a; 以第3行为例&#xff0c;使用&#xff1a; LOOKUP(1,0/(3:3<>""),3:3)示例程序 列最后一个数据&a…...

扫描条形码到电脑:Barcode to pc 4.6.3 Crack

像专业人士一样使用条形码将条形码发送到 PC 排名第一的智能手机扫描应用程序 将条形码即时发送到计算机程序并自动执行任务的最简单方法 受到全球 500,000 多名用户的信赖 条形码到 PC&#xff1a;Wi-Fi 扫描仪应用程序&#xff0c;条码到 PC&#xff1a;适用于 Android 和 i…...

从0到0.01入门 Webpack| 003.精选 Webpack面试题

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…...

[数据结构]-红黑树

前言 作者&#xff1a;小蜗牛向前冲 名言&#xff1a;我可以接受失败&#xff0c;但我不能接受放弃 如果觉的博主的文章还不错的话&#xff0c;还请点赞&#xff0c;收藏&#xff0c;关注&#x1f440;支持博主。如果发现有问题的地方欢迎❀大家在评论区指正 目录 一、红黑树的…...

Android 13.0 Launcher3 app列表页桌面图标按安装时间排序

1.概述 在13.0的系统rom定制化开发中,在对Launcher3进行功能开发时,系统默认的app列表页排序是安装app名称进行排序的, 由于功能的需要要求按照app安装时间进行排序,这就需要找到相关的排序地方,进行排序方式的修改就能完成这个功能 2.Launcher3 app列表页桌面图标按安装…...

QFont如何设置斜体|QlineEdit设置只能输入数字|QThread::finished信号发出后worker未调用析构函数

QFont如何设置斜体 要设置 QFont 的斜体,你可以使用 setItalic() 方法。以下是一个示例代码: #include <QApplication> #include <QLabel> #include <QFont> int main(int argc, char *argv...

中伟视界:创新解决方案,搭建自适应的AI算法模型训练平台

搭建AI算法模型自训练平台是当今人工智能领域的热门话题&#xff0c;但是其中存在着许多技术难点需要克服。 自训练平台需要具备高效的算法模型&#xff0c;这就要求能够处理庞大的数据量并进行高速计算。 平台需要具备强大的数据管理及存储能力&#xff0c;以满足训练过程中的…...

UML建模图文详解教程08——部署图

版权声明 本文原创作者&#xff1a;谷哥的小弟作者博客地址&#xff1a;http://blog.csdn.net/lfdfhl本文参考资料&#xff1a;《UML面向对象分析、建模与设计&#xff08;第2版&#xff09;》吕云翔&#xff0c;赵天宇 著 部署图概述 部署图(deployment diagram)也被译作配置…...

发布鸿蒙的第一个java应用

1.下载和安装华为自己的app开发软件DevEco Studio HUAWEI DevEco Studio和SDK下载和升级 | HarmonyOS开发者 2.打开IDE新建工程&#xff08;当前用的IDEA 3.1.1 Release&#xff09; 选择第一个&#xff0c;其他的默认只能用(API9)版本&#xff0c;搞了半天才发现8&#xff…...

【C++干货铺】优先队列 | 仿函数

个人主页点击直达&#xff1a;小白不是程序媛 C系列专栏&#xff1a;C干货铺 代码仓库&#xff1a;Gitee 目录 优先队列&#xff08;priority_queue &#xff09;的介绍和使用 priority_queue的介绍 priority_queue的使用 大堆 小堆 priority_queue的模拟实现 仿…...

突破技术障碍:软件工程师如何应对项目中的难题?

在软件开发项目中&#xff0c;工程师常常会遇到各种技术难题。这些难题可能涉及到复杂的算法、不兼容的系统、难以预见的软件行为&#xff0c;或者其他许多方面。 以下是一些策略和方法&#xff0c;可以帮助软件工程师有效地应对这些挑战&#xff1a; 1、理解问题&#xff1a;…...

Linux(7):Vim 程序编辑器

vi 基本上 vi 共分为三种模式&#xff0c;分别是【一般指令模式】、【编辑模式】与【指令列命令模式】。 这三种模式的作用分别是&#xff1a; 一般指令模式(command mode) 以 vi 打开一个文件就直接进入一般指令模式了(这是默认的模式&#xff0c;也简称为一般模式)。在这个模…...

windows搭建gitlab教程

1.安装gitlab 说明&#xff1a;由于公司都是windows服务器&#xff0c;这里安装以windows为例&#xff0c;先安装一个虚拟机&#xff0c;然后安装一个docker&#xff08;前提条件&#xff09; 1.1搜索镜像 docker search gitlab #搜索所有的docker search gitlab-ce-zh #搜索…...

力扣:单调栈算法思路题

单调栈分为单调递增栈和单调递减栈&#xff0c;通过使用单调栈我们可以访问到最近一个比它大&#xff08;小&#xff09;的元素。 &#x1f34a; 单调递增栈&#xff1a;单调递增栈就是从栈底到栈顶数据是依次递增&#xff0c;通常是寻找某方向第一个比它小的元素。 &#x1f…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

什么是EULA和DPA

文章目录 EULA&#xff08;End User License Agreement&#xff09;DPA&#xff08;Data Protection Agreement&#xff09;一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA&#xff08;End User License Agreement&#xff09; 定义&#xff1a; EULA即…...

HashMap中的put方法执行流程(流程图)

1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中&#xff0c;其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下&#xff1a; 初始判断与哈希计算&#xff1a; 首先&#xff0c;putVal 方法会检查当前的 table&#xff08;也就…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式&#xff0c;然后找到相应的网卡&#xff08;可以查看自己本机的网络连接&#xff09; windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置&#xff0c;选择刚才配置的桥接模式 静态ip设置&#xff1a; 我用的ubuntu24桌…...