当前位置: 首页 > news >正文

单片机调试技巧--修改bin文件实现断点

         

fromelf --text -a -c --output=all.dis F103_Moduel\F103_Moduel.axf
fromelf --bin --output=test.bin F103_Moduel\F103_Moduel.axf

在启动文件中,修改UsageFault_Handler

UsageFault_Handler\PROC; get current contextTST 	lr, #0x04				; if(!EXC_RETURN[2])ITE 	EQMRSEQ	r0, msp 				; [2]=0 ==> Z=1, get fault context from handler.MRSNE	r0, psp 				; [2]=1 ==> Z=0, get fault context from thread.STMFD	r0!, {r4 - r11} 		; push r4 - r11 registerSTMFD	r0!, {lr}				; push exec_return registerTST 	lr, #0x04				; if(!EXC_RETURN[2])ITE 	EQMSREQ	msp, r0 				; [2]=0 ==> Z=1, update stack pointer to MSP.MSRNE	psp, r0 				; [2]=1 ==> Z=0, update stack pointer to PSP.PUSH	{lr}BL		rt_hw_hard_fault_exceptionPOP 	{lr}ORR 	lr, lr, #0x04BX		lrENDP

实现rt_hw_hard_fault_exception函数

#define rt_uint32_t unsigned int
struct exception_info
{rt_uint32_t exc_return;rt_uint32_t r4;rt_uint32_t r5;rt_uint32_t r6;rt_uint32_t r7;rt_uint32_t r8;rt_uint32_t r9;rt_uint32_t r10;rt_uint32_t r11;rt_uint32_t r0;rt_uint32_t r1;rt_uint32_t r2;rt_uint32_t r3;rt_uint32_t r12;rt_uint32_t lr;rt_uint32_t pc;rt_uint32_t psr;
};/** fault exception handler*/
void rt_hw_hard_fault_exception(struct exception_info * exception_info)
{unsigned int *app_sp;int i;app_sp = (unsigned int *)(exception_info + 1);  /* context + 16*4 */printf("psr: 0x%08x\r\n", exception_info->psr);printf("r00: 0x%08x\r\n", exception_info->r0);printf("r01: 0x%08x\r\n", exception_info->r1);printf("r02: 0x%08x\r\n", exception_info->r2);printf("r03: 0x%08x\r\n", exception_info->r3);printf("r04: 0x%08x\r\n", exception_info->r4);printf("r05: 0x%08x\r\n", exception_info->r5);printf("r06: 0x%08x\r\n", exception_info->r6);printf("r07: 0x%08x\r\n", exception_info->r7);printf("r08: 0x%08x\r\n", exception_info->r8);printf("r09: 0x%08x\r\n", exception_info->r9);printf("r10: 0x%08x\r\n", exception_info->r10);printf("r11: 0x%08x\r\n", exception_info->r11);printf("r12: 0x%08x\r\n", exception_info->r12);printf(" lr: 0x%08x\r\n", exception_info->lr);printf(" pc: 0x%08x\r\n", exception_info->pc);printf("stacks: \r\n");i = 0;for (i = 0; i < 1024; ){printf("%08x ", *app_sp);app_sp++;i++;if (i % 16 == 0)printf("\r\n");}printf("\r\n");while (1);
}

The SHCSR enables the system handlers,这个函数作用就是使能UsageFault 

void UsageFaultInit(void)
{SCB->SHCSR |= (SCB_SHCSR_USGFAULTENA_Msk);
}

main.c中

/* USER CODE BEGIN Header */
/********************************************************************************* @file           : main.c* @brief          : Main program body******************************************************************************* @attention** <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.* All rights reserved.</center></h2>** This software component is licensed by ST under BSD 3-Clause license,* the "License"; You may not use this file except in compliance with the* License. You may obtain a copy of the License at:*                        opensource.org/licenses/BSD-3-Clause********************************************************************************/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "usart.h"
#include "gpio.h"/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "driver_usart.h"
#include "driver_key.h"
#include <stdio.h>
/* USER CODE END Includes *//* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD *//* USER CODE END PTD *//* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD *//* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM *//* USER CODE END PM *//* Private variables ---------------------------------------------------------*//* USER CODE BEGIN PV *//* USER CODE END PV *//* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void MX_FREERTOS_Init(void);
/* USER CODE BEGIN PFP *//* USER CODE END PFP *//* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */ring_buffer test_buffer;static void A(void);
static void B(char *buf);
static int C(int b);static void A(void)
{volatile int val = 1;//volatile int val2 = 1;char buf[16];B(buf);C(val);
}static void B(char *buf)
{strcpy(buf, "192.168.100.106 ");
}static int C(int b)
{return 100/b;
}static void D(void)
{	printf("Enter D()\r\n");C(1);printf("Exit D()\r\n");
}void UsageFaultInit(void)
{SCB->SHCSR |= (SCB_SHCSR_USGFAULTENA_Msk);
}void TestDebug(void)
{/* 100ask add *//* 使能除0错误* CCR(0xE000ED14)的bit4(DIV_0_TRP)设置为1*/volatile int *CCR = (volatile int *)0xE000ED14;*CCR |= (1<<4);UsageFaultInit();A();
}/* USER CODE END 0 *//*** @brief  The application entry point.* @retval int*/
int main(void)
{/* USER CODE BEGIN 1 *//* USER CODE END 1 *//* MCU Configuration--------------------------------------------------------*//* Reset of all peripherals, Initializes the Flash interface and the Systick. */HAL_Init();/* USER CODE BEGIN Init *//* USER CODE END Init *//* Configure the system clock */SystemClock_Config();/* USER CODE BEGIN SysInit *//* USER CODE END SysInit *//* Initialize all configured peripherals */MX_GPIO_Init();MX_USART1_UART_Init();MX_USART3_UART_Init();/* USER CODE BEGIN 2 */KEY_GPIO_ReInit();ring_buffer_init(&test_buffer);EnableDebugIRQ();printf("Hello World!\r\n");TestDebug();/* USER CODE END 2 *//* Init scheduler */osKernelInitialize();  /* Call init function for freertos objects (in freertos.c) */MX_FREERTOS_Init();/* Start scheduler */osKernelStart();/* We should never get here as control is now taken by the scheduler *//* Infinite loop *//* USER CODE BEGIN WHILE */while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */}/* USER CODE END 3 */
}/*** @brief System Clock Configuration* @retval None*/
void SystemClock_Config(void)
{RCC_OscInitTypeDef RCC_OscInitStruct = {0};RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};/** Initializes the RCC Oscillators according to the specified parameters* in the RCC_OscInitTypeDef structure.*/RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;RCC_OscInitStruct.HSEState = RCC_HSE_ON;RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;RCC_OscInitStruct.HSIState = RCC_HSI_ON;RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK){Error_Handler();}/** Initializes the CPU, AHB and APB buses clocks*/RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK){Error_Handler();}
}/* USER CODE BEGIN 4 *//* USER CODE END 4 *//*** @brief  Period elapsed callback in non blocking mode* @note   This function is called  when TIM8 interrupt took place, inside* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment* a global variable "uwTick" used as application time base.* @param  htim : TIM handle* @retval None*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{/* USER CODE BEGIN Callback 0 *//* USER CODE END Callback 0 */if (htim->Instance == TIM8) {HAL_IncTick();}/* USER CODE BEGIN Callback 1 *//* USER CODE END Callback 1 */
}/*** @brief  This function is executed in case of error occurrence.* @retval None*/
void Error_Handler(void)
{/* USER CODE BEGIN Error_Handler_Debug *//* User can add his own implementation to report the HAL error return state */__disable_irq();while (1){}/* USER CODE END Error_Handler_Debug */
}#ifdef  USE_FULL_ASSERT
/*** @brief  Reports the name of the source file and the source line number*         where the assert_param error has occurred.* @param  file: pointer to the source file name* @param  line: assert_param error line source number* @retval None*/
void assert_failed(uint8_t *file, uint32_t line)
{/* USER CODE BEGIN 6 *//* User can add his own implementation to report the file name and line number,ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) *//* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT *//************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

相关文章:

单片机调试技巧--修改bin文件实现断点

fromelf --text -a -c --outputall.dis F103_Moduel\F103_Moduel.axffromelf --bin --outputtest.bin F103_Moduel\F103_Moduel.axf 在启动文件中&#xff0c;修改UsageFault_Handler UsageFault_Handler\PROC; get current contextTST lr, #0x04 ; if(!EXC_RETURN[2])ITE…...

微信小程序:This Mini Program cannot be opened as your Weixin version is out-of-date.

项目场景&#xff1a; 问题描述 升级基础库3.2.0&#xff0c;然后PC端整个小程序都打不开了&#xff0c;点击小程序提示”This Mini Program cannot be opened as your Weixin version is out-of-date. Update Weixin to the latest version.“&#xff0c;并且点击Update Wei…...

04 C++中的四种强制类型转换

系列文章目录 04 C中的四种强制类型转换 目录 系列文章目录 文章目录 前言 一、静态转换&#xff08;Static Cast&#xff09; 二、动态转换&#xff08;Dynamic Cast&#xff09; 三、常量转换&#xff08;Const Cast&#xff09; 四、重新解释转换&#xff08;Reinte…...

电力感知边缘计算网关产品设计方案-边缘计算自控算法模型

边缘计算网关与其他数据采集的IoT网关设备不同之处在于可以根据应用场景和产品解决方案,单独设置一些边缘计算算法模型,实现离线系统和边缘计算自控逻辑判别+执行系统方案,自控算法逻辑单元也是边缘计算网关自控系统方案的核心单元。 自控算法逻辑单元根据产品应用不同,有…...

C语言进阶之笔试题详解(1)

引言&#xff1a; 对指针知识进行简单的回顾&#xff0c;然后再完成笔试题。 ✨ 猪巴戒&#xff1a;个人主页✨ 所属专栏&#xff1a;《C语言进阶》 &#x1f388;跟着猪巴戒&#xff0c;一起学习C语言&#x1f388; 目录 引言&#xff1a; 知识简单回顾 指针是什么 指针变…...

报道|2023 INFORMS 最佳论文(部分)华人获奖者名单

编者按 本文收集了部分2023年INFORMS年会最佳论文评选的华人获奖者名单&#xff0c;祝贺获奖者们&#xff01;如果读者身边有本文遗漏的获奖者请在文章下方评论区告诉小编。 ● George Nicholson学生论文竞赛一等奖&#xff1a; Bayesian Design Principles for Frequentist …...

【Docker】从零开始:12.容器数据卷

【Docker】从零开始&#xff1a;12.容器数据卷 1.什么是容器数据库卷2.数据的覆盖问题3.为什么要用数据卷4.Docker提供了两种卷&#xff1a;5.两种卷的区别6.bind mount7.Docker managed volumevolume 语法volume 操作参数 1.什么是容器数据库卷 卷 就是目录或文件&#xff0c…...

Spring Boot 整合MyBatis-Plus 详解

MyBatis-Plus (opens new window)&#xff08;简称 MP&#xff09;是一个 MyBatis (opens new window)的增强工具&#xff0c;在 MyBatis 的基础上只做增强不做改变&#xff0c;为简化开发、提高效率而生。 全新的 MyBatis-Plus 3.0 版本基于 JDK8&#xff0c;提供了 lambda 形…...

【前端】让列表像Excel单元格一样编辑

前言 领导说了一堆的话,最后总结一句就是客户很懒,客户的员工更加懒。 本着让别人节省时间的原则,提倡出了让列表和Excal的单元格一样,不仅看数据还可以随时更改数据。 查资料 根据 Jeecg-Vue3 源码介绍,从而知道是基于 Vben Admin 开源项目进行改造的。 因此在 Vben…...

数字图像处理-Matlab实验

实验一 图像增强 实验内容: 对于给定的低对比度测试图像,利用灰度图像直方图均衡化算法进行图像视觉效果增强。 对于给定的低照度彩色测试图像,结合颜色空间转换和灰度图像直方图均衡化算法进行图像视觉效果增强。 实验数据: Test1_1.jpg: Test1_2.jpg: 实验步骤: %% …...

Nginx:配置文件详解

一、Nginx配置文件 main配置段&#xff1a;全局配置 events段&#xff1a;定义event工作模式 http {}&#xff1a;定义http协议配置 支持使用变量&#xff1a; 内置变量&#xff1a;模块会提供内建变脸定义 自定义变量&#xff1a;set var_name value 二、 主…...

卷积,是什么?

其实就是对事物的作用&#xff0c;或者说作用力&#xff0c;比如说&#xff0c;石板上没有字&#xff0c;我们刻上字&#xff0c;便于识别&#xff0c;从机器视觉角度来说&#xff0c;就是对图像的作用力&#xff0c;这种作用使得能看清想要的东西&#xff0c;感觉还是很主观&a…...

Javascript的闭包有哪些应用?

JavaScript 中的闭包是一种强大的特性&#xff0c;它可以用于多种应用。以下是一些闭包在 JavaScript 中的常见应用&#xff1a; 1、封装私有变量&#xff1a; 通过闭包&#xff0c;可以创建私有变量和方法。外部作用域无法直接访问闭包内的变量&#xff0c;从而实现了信息隐藏…...

LCM-LoRA模型推理简明教程

潜在一致性模型 (LCM) 通常可以通过 2-4 个步骤生成高质量图像&#xff0c;从而可以在几乎实时的设置中使用扩散模型。 来自官方网站&#xff1a; LCM 只需 4,000 个训练步骤&#xff08;约 32 个 A100 GPU 小时&#xff09;即可从任何预训练的稳定扩散 (SD) 中提取出来&#…...

设计模式-开篇

什么是设计模式 设计模式是一种被反复使用、多数人知晓的、经过分类编目的代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、提高代码的可靠性。设计模式不是可直接转化为代码的完成解决方案&#xff0c;而是描述了如何解决一个问题的经过&#xf…...

HashMap的实现原;HashMap的工作原理;HashMap存储结构; HashMap 构造函数

文章目录 说一下HashMap的实现原理(非常重要)①HashMap的工作原理HashMap存储结构常用的变量HashMap 构造函数tableSizeFor() put()方法详解hash()计算原理resize() 扩容机制get()方法为什么HashMap链表会形成死循环 HashMap是我们在工作中使用到存储数据特别频繁的数据结构&am…...

JavaScript 原型,原型链的特点

JavaScript 的原型&#xff08;Prototype&#xff09;和原型链&#xff08;Prototype chain&#xff09;是 JavaScript 面向对象编程中的重要概念。 原型&#xff08;Prototype&#xff09; 在 JavaScript 中&#xff0c;每个对象都有一个原型对象&#xff0c;而这个原型对象…...

越南服务器租用:企业在越南办工厂的趋势与当地(ERP/OA等)系统部署的重要性

近年来&#xff0c;越南逐渐成为全球企业布局的热门目的地之一。许多企业纷纷选择在越南设立工厂&#xff0c;以利用其低廉的劳动力成本和优越的地理位置。随着企业在越南的扩张&#xff0c;对于当地部署ERP系统或OA系统等的需求也日益增长。在这种情况下&#xff0c;租用越南服…...

Qt QString与QChar总结

(一) QString 1 QString的简介 QString 是Qt 中的一个类&#xff0c;用于存储字符串&#xff0c;QString 没有父类。QString 存储的是一串字符&#xff0c;每个字符是一个 QChar 类型的数据。QChar 使用的是 UTF-16 编码&#xff0c;一个字符包含 2字节数据。 对于超过 6553…...

Leetcode算法系列| 1. 两数之和(四种解法)

目录 1.题目2.题解解法一&#xff1a;暴力枚举解法二&#xff1a;哈希表解法解法三&#xff1a;双指针(有序状态)解法四&#xff1a;二分查找(有序状态) 1.题目 给定一个整数数组 nums 和一个整数目标值 target&#xff0c;请你在该数组中找出 和为目标值 target 的那 两个 整数…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

MySQL 8.0 OCP 英文题库解析(十三)

Oracle 为庆祝 MySQL 30 周年&#xff0c;截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始&#xff0c;将英文题库免费公布出来&#xff0c;并进行解析&#xff0c;帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能

1. 开发环境准备 ​​安装DevEco Studio 3.1​​&#xff1a; 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK ​​项目配置​​&#xff1a; // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...

基于Java+VUE+MariaDB实现(Web)仿小米商城

仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意&#xff1a;运行前…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...

[拓扑优化] 1.概述

常见的拓扑优化方法有&#xff1a;均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有&#xff1a;有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...