GPT写SQL的模版
表:profit_loss_sum_m_snapshot
计算字段:成本cost_whole求和,收入income_whole求和,收入求和-成本求和,成本目标cost_target求和,收入求和-成本目标求和
条件:日期statis_date在2023-11-01,资源类型resource_type为公路,区域cost_structure_org为苏沪皖
分组:区域 cost_structure_org
分组后条件:收入求和-成本求和 小于 收入求和-成本目标求和
排序:按 收入求和-成本求和 倒序
SELECT cost_structure_org,SUM(cost_whole) AS total_cost,SUM(income_whole) AS total_income,SUM(income_whole) - SUM(cost_whole) AS income_minus_cost,SUM(cost_target) AS total_cost_target,SUM(income_whole) - SUM(cost_target) AS income_minus_cost_target
FROM profit_loss_sum_m_snapshot
WHERE statis_date = '2023-11-01'AND resource_type = '公路'AND cost_structure_org = '苏沪皖'
GROUP BY cost_structure_org
HAVING (SUM(income_whole) - SUM(cost_whole)) < (SUM(income_whole) - SUM(cost_target))
ORDER BY income_minus_cost DESC;
增加子查询
表:carrier_label_detail
计算字段:承运商carrier_code去重数量
条件:日期statis_date在2023-11-01,确认状态verify_status为审核通过,工作状态work_status为活跃,承运商carrier_code:内表:表:bid_book_detail 计算字段:承运商carrier_code去重 条件:招标日期quotation_end_time在2023-01-01和2023-08-03之间
分组:区域 develop_org_name
分组后条件:无
排序:无
SELECT develop_org_name, COUNT(DISTINCT carrier_code) AS unique_carrier_count
FROM carrier_label_detail
WHERE statis_date = '2023-11-01'AND verify_status = '审核通过'AND work_status = '活跃'AND carrier_code IN (SELECT DISTINCT carrier_codeFROM bid_book_detailWHERE quotation_end_time BETWEEN '2023-01-01' AND '2023-08-03')
GROUP BY develop_org_name;
嵌套查询
外表:内表:表名:profit_loss_sum_m_snapshot 计算字段:成本cost_whole求和,收入income_whole求和,收入求和-成本求和,成本目标cost_target求和,收入求和-成本目标求和 条件:日期statis_date在2023-11-01,资源类型resource_type为公路,区域cost_structure_org为苏沪皖 分组:区域 cost_structure_org 分组后条件:收入求和-成本求和 小于 收入求和-成本目标求和计算字段:成本求和的求和,收入求和的求和,收入求和-成本求和的求和
条件:成本求和的求和 大于100000
SELECTSUM(subquery.成本求和) AS 成本求和的求和,SUM(subquery.收入求和) AS 收入求和的求和,SUM(subquery.收入减成本) AS 收入减成本求和
FROM (SELECTSUM(cost_whole) AS 成本求和,SUM(income_whole) AS 收入求和,SUM(income_whole) - SUM(cost_whole) AS 收入减成本,SUM(cost_target) AS 成本目标求和,SUM(income_whole) - SUM(cost_target) AS 收入减成本目标FROMprofit_loss_sum_m_snapshotWHEREstatis_date = '2023-11-01'AND resource_type = '公路'AND cost_structure_org = '苏沪皖'GROUP BYcost_structure_orgHAVINGSUM(income_whole) - SUM(cost_whole) < SUM(income_whole) - SUM(cost_target)
) AS subquery
HAVINGSUM(subquery.成本求和) > 100000;
多表关联
表:carrier_label_detail
计算字段:承运商carrier_code去重数量,bid_book_detail表中的vehicle车辆数去重
关联字段:承运商carrier_code
关联表:表名:bid_book_detail,条件:招标日期quotation_end_time在2023-01-01和2023-08-03之间
条件:日期statis_date在2023-11-01,确认状态verify_status为审核通过,工作状态work_status为活跃
分组:区域 develop_org_name
分组后条件:无
排序:无
SELECT develop_org_name,COUNT(DISTINCT carrier_label_detail.carrier_code) AS unique_carrier_count,COUNT(DISTINCT bid_book_detail.vehicle) AS unique_vehicle_count
FROM carrier_label_detail
LEFT JOIN bid_book_detail ON carrier_label_detail.carrier_code = bid_book_detail.carrier_code
WHERE carrier_label_detail.statis_date = '2023-11-01'AND carrier_label_detail.verify_status = '审核通过'AND carrier_label_detail.work_status = '活跃'AND bid_book_detail.quotation_end_time BETWEEN '2023-01-01' AND '2023-08-03'
GROUP BY develop_org_name;
相关文章:
GPT写SQL的模版
表:profit_loss_sum_m_snapshot 计算字段:成本cost_whole求和,收入income_whole求和,收入求和-成本求和,成本目标cost_target求和,收入求和-成本目标求和 条件:日期statis_date在2023-11-01&…...
蓝桥杯官网练习题(平均)
问题描述 有一个长度为 n 的数组( n 是 10 的倍数),每个数 ai 都是区间 [0,9] 中的整数。小明发现数组里每种数出现的次数不太平均,而更改第 i 个数的代价为 bi,他想更改若干个数的值使得这 10 种数出现的次数相等…...

【无标题】动手学深度学习_现代神经网络_未完
这里写目录标题 深度学习之前的网络 AlexNetAlexNet得到了竞赛冠军AlexNet架构Alex net更多细节数据增强 VGGNiN知识补充flop暂退法 drop_out 深度学习之前的网络 1、核方法 机器学习 SVM现在还是很广泛的使用,因为对调参的需求不那么大,对调参不太敏感…...

Java王者荣耀
GameFrame 图片 package 王者荣耀;import java.awt.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyAdapter; import java.awt.event.KeyEvent; import java.io.File; import java.util.ArrayList;import javax.soun…...

【理解ARM架构】操作寄存器实现UART | 段的概念 | IDE背后的命令
🐱作者:一只大喵咪1201 🐱专栏:《理解ARM架构》 🔥格言:你只管努力,剩下的交给时间! 目录 🍠操作寄存器实现UART🍟UART原理🍟编程 🍠…...
python 左值查找 右值查找
左值查找 在一组数据中查找出 数字x 在这组数据中第一次出现的索引并输出,没有找到则输出-1查找方式:二分查找 数据前提:一组数据要有序一组数据: arr [2, 3, 3, 3, 5, 7, 9, 11, 13, 15, 17]测试: 示例1ÿ…...
机器学习之自监督学习(四)MoCo系列翻译与总结(二)
MoCo中相关工作的对比分析 去噪自动编码器(Denoising Autoencoder)是一种用于学习数据表示的神经网络模型。它的主要目标是通过去除输入数据中的噪声,学习到输入数据的有用表示,从而提高模型对干净数据的鲁棒性。下面是对去噪自动…...
元宇宙企业3d数字展厅轻松低本搭建更全面、多元、趣味化的展览
对所有企业来说,拥有一个3D线上展厅是互联网营销必不可少的部分,但是3D线上展厅定制周期长费用高,让很多企业公司望而却步,web3d开发公司制作的3D线上企业展厅制作平台备导览地图、语音解说、交互热点、全景漫游、自主行走、链接跳…...
华为OD机试真题-开源项目热榜-2023年OD统一考试(C卷)
题目描述: 某个开源社区希望将最近热度比较高的开源项目出一个榜单,推荐给社区里面的开发者。对于每个开源项目,开发者可以进行关注(watch)、收藏(star)、fork、提issue、提交合并请求(MR)等。 数据库里面统计了每个开源项目关注、收藏、fork、issue、MR的数量,开源项目的热…...

深入探索Maven:优雅构建Java项目的新方式(一)
Maven高级 1,分模块开发1.1 分模块开发设计1.2 分模块开发实现 2,依赖管理2.1 依赖传递与冲突问题2.2 可选依赖和排除依赖方案一:可选依赖方案二:排除依赖 3,聚合和继承3.1 聚合步骤1:创建一个空的maven项目步骤2:将项目的打包方式改为pom步骤…...

Shopee如何入驻?如何防封?
Shopee作为东南亚领航电商平台,面向东南亚蓝海市场,近年来随着东南亚市场蒸蒸日上,虾皮也吸引了大批量的跨境商家入驻。那么接下来就给想要入驻的虾皮小白一个详细的安全入驻教程。 一、商家如何入驻 虾皮与LAZADA最大的区别就是商家即卖家&…...

2024年第十六届山东省职业院校技能大赛中职组 “网络安全”赛项竞赛正式卷任务书
2024年第十六届山东省职业院校技能大赛中职组 “网络安全”赛项竞赛正式卷任务书 2024年第十六届山东省职业院校技能大赛中职组 “网络安全”赛项竞赛正式卷A模块基础设施设置/安全加固(200分)A-1:登录安全加固(Windows, Linux&am…...

Python编程基础
Python是一种简单易学的编程语言,广泛应用于Web开发、数据分析、人工智能等领域。无论您是初学者还是有一定编程经验的人士,都可以从Python的基础知识开始建立自己的编程技能。 目录 理论Python语言的发展程序设计语言的分类静态语言与脚本语言的区别 代…...

python类和对象
1.使用对象组织数据 class Student:nameNone #记录名字 stu1Student() #创建对象 stu1.name"abc" #为对象属性赋值2.类的定义和使用 2.1成员方法的定义语法 传参的时候self是透明的,不用管 class Stu:nameNonedef sayHi(self):print(f"你好&#x…...

ubuntu操作系统中docker下Hadoop分布式前置环境配置实验
版本: centos7 hadoop 3.1.3 java JDK:1.8 集群规划: masterslave1slave2HDFS NameNode DataNode DataNode SecondryNameNode DataNode YARNNodeManager ResourceManage NodeManager NodeManager 1.docker容器: 把普通用户加入到docker组&am…...

【Linux学习笔记】protobuf 基本数据编码
https://zhuanlan.zhihu.com/p/557457644https://zhuanlan.zhihu.com/p/557457644 [新文导读] 从Base64到Protobuf,详解Protobuf的数据编码原理本篇将从Base64再到Base128编码,带你一起从底层来理解Protobuf的数据编码原理。本文结构总体与 Protobuf 官…...

OpenCV快速入门:图像分析——图像分割和图像修复
文章目录 前言一、图像分割1.1 漫水填充法1.1.1 漫水填充法原理1.1.2 漫水填充法实现步骤1.1.3 代码实现 1.2 分水岭法1.2.1 分水岭法原理1.2.2 分水岭法实现步骤1.2.3 代码实现 1.3 GrabCut法1.3.1 GrabCut法原理1.3.2 GrabCut法实现步骤1.3.3 代码实现 1.4 Mean-Shift法1.4.1…...

BART - 磁共振重建库 linux系统安装 MATLAB 使用
本文主要介绍如何在linux系统中安装伯克利大学的磁共振重建库BART 和在matlab中的配置使用。 安装必要的库 (linux 命令行) $ sudo apt-get install make gcc libfftw3-dev liblapacke-dev libpng-dev libopenblas-dev 下载编译BART 文件 (官网链接:BART Toolbox) 命令行下…...
在linux下在官网的nginxtar包 的安装方式并配置全局变量
在Linux系统中,Nginx是一种流行的Web服务器和反向代理服务器,它可以提供高性能的静态内容服务和动态内容服务。本文将详细介绍如何在Linux系统中安装Nginx,并配置全局变量。 安装Nginx 以下是在Linux系统中安装Nginx的步骤: 1.…...
Java中数据库查询方法MapListProcessor的应用
1.供应链系统的销售合同捉过了两个金额一样的,同一个项目 2.合同号也一样,oaid不一样,但是从OA前台只有一个 3.一个是建云的一个是泛微的 4.做下过滤,如果同一个合同编号,在泛微里面有的,建云的就不获取了 …...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

基于Java+MySQL实现(GUI)客户管理系统
客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息,对客户进行统一管理,可以把所有客户信息录入系统,进行维护和统计功能。可通过文件的方式保存相关录入数据,对…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...

aardio 自动识别验证码输入
技术尝试 上周在发学习日志时有网友提议“在网页上识别验证码”,于是尝试整合图像识别与网页自动化技术,完成了这套模拟登录流程。核心思路是:截图验证码→OCR识别→自动填充表单→提交并验证结果。 代码在这里 import soImage; import we…...