当前位置: 首页 > news >正文

DeepMind 推出 OPRO 技术,可用于优化 ChatGPT 提示

本心、输入输出、结果

文章目录

  • DeepMind 推出 OPRO 技术,可用于优化 ChatGPT 提示
    • 前言
      • 消息摘要
      • OPRO的工作原理
      • DeepMind的研究
      • 相关链接
      • 花有重开日,人无再少年
      • 实践是检验真理的唯一标准

DeepMind 推出 OPRO 技术,可用于优化 ChatGPT 提示


编辑:简简单单 Online zuozuo
地址:https://blog.csdn.net/qq_15071263

个人简介 : 简简单单Online zuozuo,目前主要从事 Java 相关工作,商业方向为 B、G 端,主要使用Java、Python 进行日常开发,喜欢探索各个方面的内容,对很多的方向、内容感兴趣 :目前对 AIGC、云计算、物联网方向感兴趣

未闻万里蓬莱,而窥先圣遗智。故,以此生筑梦,奔而逐之;以泰山之伟,攀而登之;以静雅素心,处
世为人。

欢迎有兴趣的朋友相互交流,共同成长。微信: tja6288 商务合作/资料获取/技术交流


如果觉得本文对你有帮助,欢迎点赞、收藏、评论

前言

DeepMind 推出 OPRO 技术,可用于优化 ChatGPT 提示

DeepMind 推出 OPRO 技术,可用于优化 ChatGPT 提示

在这里插入图片描述

消息摘要

  1. 🧠 OPRO(优化通过提示)是由Google DeepMind开发的强大方法,利用大型语言模型(LLM)作为其自身提示的优化器。

  2. 🔄 OPRO通过使用LLM作为优化器,以自然语言描述的方式解决问题,从而改进提示的性能,特别适用于梯度不容易获取的提示优化问题。

  3. 🌐 DeepMind在线性回归和“旅行推销员问题”等数学优化问题上测试了OPRO,并展示了在优化LLM如ChatGPT和PaLM上的潜在效果。

Google DeepMind推出了一项名为“优化通过提示(OPRO)”的技术,将大型语言模型(LLM)作为其自身提示的优化器。该方法旨在通过自然语言描述问题,指导LLM生成和改进解决方案,从而提高提示性能。

在这里插入图片描述

OPRO的工作原理

OPRO的工作方式相对简单,使用LLM作为优化器,但与使用数学公式不同,它采用自然语言描述优化问题,指导LLM迭代生成和改进解决方案。这对于提示优化等问题特别有用,因为在这些情况下,梯度不容易获取。

该技术以“元提示”作为输入,由任务的自然语言描述以及一些问题和解决方案的示例组成。在优化过程中,LLM基于问题描述和元提示中的先前解决方案生成候选解决方案。然后,OPRO评估这些候选解决方案的结果,并将它们与其质量得分一起添加到元提示中。这个过程重复进行,直到模型不再提出具有改进得分的新解决方案

LLM作为优化器的一个关键优势是它们能够处理自然语言指令,这使用户能够描述优化任务而无需形式规范。例如,用户可以指定“准确性”等度量标准,同时提供其他指令,如要求模型提供简洁且普遍适用的解决方案。
OPRO还充分利用了LLM对上下文模式的识别能力,通过在元提示中包含的示例来识别优化轨迹。这一方面是OPRO的核心魔力,因为LLM将语言视为数字令牌,可以发现人类观察不到的模式。

DeepMind在线性回归和“旅行推销员问题”等两个著名的数学优化问题上测试了OPRO,并展示了在这些情况下的有望结果。然而,OPRO的真正潜力在于优化LLM的使用,如ChatGPT和PaLM

在这里插入图片描述

在这里插入图片描述

DeepMind的研究

DeepMind的研究显示,OPRO可以引导LLM优化其自身提示,即找到最大化特定任务响应准确性的提示。例如,为了发现解决词数学问题的最佳提示,一个“优化器LLM”被给予一个包含指令和示例的元提示,其中包含优化提示的占位符。模型生成一组不同的优化提示,并将它们传递给一个“评分LLM”,该LLM在问题示例上测试它们并评估结果。最佳提示及其分数被添加到元提示的开头,然后重复这个过程。

研究人员使用PaLM和GPT系列的多个LLM对该技术进行了评估,根据实验,所有模型都能通过迭代优化提高生成提示的性能。

虽然DeepMind尚未发布OPRO的代码,但该技术的概念直观且简单,可以在几小时内创建一个自定义实现。这里分享一个由LlamaIndex制作的使用OPRO增强LLM在检索增强生成(RAG)任务上性能的逐步指南感兴趣的可以访问阅读。

OPRO是利用LLM优化其性能的多种技术之一,这一领域正在积极探索各种主题,包括越狱和红队行动,研究人员正在不断释放大型语言模型的全部潜力

在这里插入图片描述

在这里插入图片描述

相关链接

https://docs.llamaindex.ai/en/latest/examples/prompts/prompt_optimization.html

在这里插入图片描述

花有重开日,人无再少年

在这个充满困难和挑战的时期内,我们依然应该保持积极向上,放下遥不可及的欲望,平凡的普通人也可以成就自己的小梦想

在这个充满变化和无限可能的世界里,每一天都是新的开始。让我们拥抱今天,以积极乐观的心态去面对生活的挑战和机遇。

无论我们遇到什么困难,都要相信自己的力量和智慧,勇敢地迎接挑战。因为每一次的克服和超越,都将使我们的生命更加丰富多彩。

我们要学会欣赏生活中的美好事物,用感恩的心去珍惜所拥有的一切。这样,我们就会发现,快乐其实就在我们的身边,时时刻刻陪伴着我们。

让我们保持对未来的信心和热情,勇敢地追求自己的梦想。无论路途多么艰辛,只要我们坚持不懈,终将实现自己的目标。

让我们一起相信,只要我们心中充满阳光,就没有什么能够阻挡我们前进的步伐。让我们用积极乐观的心态,书写属于我们的精彩人生!

实践是检验真理的唯一标准

✅ 🥶 😎 😟 😲 😰 😭 😓
🔔️ 😂 😅 😍 😘 😚 😜 🤢
👿 💀 👽 👾 😻 💕 💔 💯
💦 💤 🤝 🙍‍♂️ 🙍 🍊 🍉 🍏

感谢亲的点赞、收藏、评论,一键三连支持,谢谢

在这里插入图片描述

相关文章:

DeepMind 推出 OPRO 技术,可用于优化 ChatGPT 提示

本心、输入输出、结果 文章目录 DeepMind 推出 OPRO 技术,可用于优化 ChatGPT 提示前言消息摘要OPRO的工作原理DeepMind的研究相关链接花有重开日,人无再少年实践是检验真理的唯一标准 DeepMind 推出 OPRO 技术,可用于优化 ChatGPT 提示 编辑…...

企业网络中的身份安全

随着近年来数字化转型的快速发展,企业使用的数字身份数量急剧增长。身份不再仅仅局限于用户。它们现在扩展到设备、应用程序、机器人、第三方供应商和组织中员工以外的其他实体。即使在用户之间,也存在不同类型的身份,例如属于IT管理员、远程…...

智能优化算法应用:基于正余弦算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于正余弦算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于正余弦算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.正余弦算法4.实验参数设定5.算法结果6.参考文献7.…...

创建一个带有背景图层和前景图层的渲染窗口

开发环境: Windows 11 家庭中文版Microsoft Visual Studio Community 2019VTK-9.3.0.rc0vtk-example demo解决问题: 创建一个带有背景图层和前景图层的渲染窗口,知识点:1. 画布转image;2. 渲染图层设置;3.…...

Docker 运行 Oracle Autonomous Database Free Container

​ Docker 运行 Oracle Autonomous Database Free Container Oracle Autonomous Database Free Container Image 介绍通过 Docker 运行 Oracle Autonomous Database Free ContainerWallet 配置可用的 TNS 别名MY_ATP TNS 别名MY_ADW TNS 别名连接到 Oracle Autonomous Databas…...

《2023全球隐私计算报告》正式发布!

2023全球隐私计算报告 1、2023全球隐私计算图谱2、国内外隐私计算相关政策3、隐私计算技术的最新发展4、隐私计算技术的合规挑战5、隐私计算的应用市场动态6、隐私计算开源整体趋势7、隐私计算的未来趋势 11月23日,由浙江省人民政府、商务部共同主办,杭州…...

JAVA sql 查询2

SELECT * FROM employees order by salayr DESC SELECT employee_id,first_name,salary from employees ORDER BY salary,employee_id desc -- 最大值 最小值 总和 平均值 SELECT max(salary),MIN(salary),sum(salary),AVG(salary) FROM employees -- 总共有多少员工 select…...

为第一个原生Spring5应用程序添加上Log4J日志框架!

😉😉 学习交流群: ✅✅1:这是孙哥suns给大家的福利! ✨✨2:我们免费分享Netty、Dubbo、k8s、Mybatis、Spring...应用和源码级别的视频资料 🥭🥭3:QQ群:583783…...

单片机复位电路

有时候我们的代码会跑飞,这个时候基本上是一切推到重来.”推倒重来”在计算机术语上称为复位.复位需要硬件的支持,复位电路就是在单片机的复位管脚上产生一个信号,俗称复位信号.这个信号需要持续一定的时间,单片机收到该信号之后就会复位,从头执行。 复位原理: 那么…...

11.28 知识回顾(Web框架、路由控制、视图层)

一、 web 框架 1.1 web框架是什么? 别人帮咱们写了一些基础代码------》我们只需要在固定的位置写固定的代码--》就能实现一个web应用 Web框架(Web framework)是一种开发框架,用来支持动态网站、网络应用和网络服务的开发。这大多…...

osgFX扩展库-异性光照、贴图、卡通特效(1)

本章将简单介绍 osgFX扩展库及osgSim 扩展库。osgFX库用得比较多,osgSim库不常用,因此,这里只对这个库作简单的说明。 osgFX扩展库 osgFX是一个OpenSceneGraph 的附加库,是一个用于实现一致、完备、可重用的特殊效果的构架工具,其…...

SELinux零知识学习三十一、SELinux策略语言之角色和用户(2)

接前一篇文章:SELinux零知识学习三十、SELinux策略语言之角色和用户(1) 三、SELinux策略语言之角色和用户 SELinux提供了一种依赖于类型强制(类型增强,TE)的基于角色的访问控制(Role-Based Access Control),角色用于组域类型和限制域类型与用户之间的关系,SELinux中…...

Unity UGUI的自动布局-LayoutGroup(水平布局)组件

Horizontal Layout Group | Unity UI | 1.0.0 1. 什么是HorizontalLayoutGroup组件? HorizontalLayoutGroup是Unity UGUI中的一种布局组件,用于在水平方向上对子物体进行排列和布局。它可以根据一定的规则自动调整子物体的位置和大小,使它们…...

【SpringCloud】设计原则之分层架构与统一通信协议

一、设计原则之分层架构 应用分层看起来很简单,但每个程序员都有自己的一套方法,哪怕是初学者,所以实施起来并非易事 最早接触的分层架构应该是最熟悉的 MVC(Model - View - Controller)架构,其将应用分成…...

在Linux环境如何启动和redis数据库?

Linux中连接redis数据库: 前台启动: 第一步:redis-server:服务器启动命令 当我们启动改窗口后,出现如下所示: 该窗口就不能关闭,否则会出现redis无法使用的情况,重新打开一个窗口&#xff0c…...

selenium判断元素是否存在的方法

文章目录 快捷方法完整示例程序 快捷方法 selenium没有exist_xxx相关的方法,无法直接判断元素存在。但是锁定元素时使用的browser.find_elements(By.CSS_SELECTOR, "css元素")会返回一个列表list,如果不存在这个元素就会返回一个空列表。因此…...

后端真批量新增的使用

1,添加真批量新增抽象接口 public interface EasyBaseMapper extends BaseMapper { /** * 批量插入 仅适用于mysql * * return 影响行数 */ Integer insertBatchSomeColumn(Collection entityList); } 2,新增类,添加真批量新增的方法 public class InsertBatchSqlInjector ext…...

HttpRunner原来还能这么用,大开眼界!!!

hook机制 Httprunner 框架中的 hook 机制相当于unittest框架中的 setup , teardown 函数,用来进行测试用例执行之前的环境初始化以及测试用例执行完毕之后的环境清理操作。 httprunner 中的 hooks 机制可以用在测试用例层级也可以用在测试步骤层级,其关键…...

给WordPress 自带的搜索功能添加过滤只搜索文章的标题

如果想让 WordPress 自带的搜索功能只搜索文章标题,让搜索结果更加精确(其实WordPress 自带的搜索功能本来模糊查找就很弱),可以将下面的代码添加到当前主题functions.php中: 用过滤器:posts_search 就可以…...

frp内网穿透

1 概述 frp 是什么? frp 是一款高性能的反向代理应用,专注于内网穿透。它支持多种协议,包括 TCP、UDP、HTTP、HTTPS 等,并且具备 P2P 通信功能。使用 frp,您可以安全、便捷地将内网服务暴露到公网,通过拥有公网 IP 的节点进行中转。frp原理 公网服务器作为服务端,内网服…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M:百万(Million) B:十亿(Billion) 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的,但是一个参数所表示多少字节不一定,需要看这个参数以什么…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)

1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学?传统医学奠基期(远古 - 17 世纪)近代医学转型期(17 世纪 - 19 世纪末)​现代医学成熟期(20世纪至今) 中医的源远流长和一脉相承远古至…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...

Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?

Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...

DBLP数据库是什么?

DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...