当前位置: 首页 > news >正文

成为AI产品经理——TPR、FPR、ROC、AUC

目录

一、PR图、BEP

1.PR图

2.BEP 

二、灵敏度、特异度

1.灵敏度

2.特异度

三、真正率、假正率 

1.真正率

2.假正率 

三、ROC、AUC

1.ROC

2.AUC

四、KS值


一、PR图、BEP

1.PR图

二分类问题模型通常输出的是一个概率值,我们需要设定一个阈值,让大于这个阈值的时候为正样本,其余的为负样本。

如果我们选择不同的阈值,我们就可以得到不同的预测结果,也就可以得到不同的混淆矩阵,从而得到不同的precision值和recall值。P-R图是我们在连续变化的阈值下,得到的准确率和召回率的关系。(召回率作为横轴,将精确率作为纵轴)。

PR 图主要有以下用途:

  1. 权衡 Precision 和 Recall: PR 图帮助我们直观地理解在不同阈值下模型的 Precision 和 Recall 的权衡关系。这对于某些应用中 Precision 和 Recall 之间存在权衡关系的情况非常重要,例如在医学领域的疾病诊断中,我们可能更关注 Recall,以确保尽可能多地捕获患者的真实病情。

  2. 评估样本不平衡: 当数据集中的类别不平衡时,PR 图比 ROC 曲线更能准确地反映模型性能。在样本不平衡的情况下,ROC 曲线可能给出过于乐观的评估,而 PR 图更能反映模型在正类别上的性能。

  3. 选择适当的阈值: PR 图可以帮助选择适当的分类阈值,以满足特定任务的需求。根据应用场景,我们可能更关注 Precision 或 Recall,通过观察 PR 图可以更好地理解不同阈值下的模型表现。

  4. 比较模型性能: PR 图可用于比较不同模型的性能。具体来说,我们可以比较不同模型在保持较高 Precision 的同时实现较高 Recall 的能力,或者根据实际需求调整模型的阈值。

下图A模型的曲线完全包住C模型的曲线,我们就说A模型比C模型的效果好;

B模型的曲线完全包住C模型的曲线,我们就说B模型比C模型的效果好;

但是A模型和B模型的曲线有交叉,我们使用BEP进行比较。

2.BEP 

BEP是精确率和召回率的平衡点,P=R时,那一条线。如果,模型的PR曲线有交叉,我们可以根据BEP来判断模型的好坏。

BEP过于简单,我们常用F1值来比较模型。F1值是考虑了召回率和精确率的一个计算指标。

F1 = \frac{2*precision*recall}{precision+recall}

二、灵敏度、特异度

1.灵敏度

灵敏度的计算公式为:

灵敏度  = \frac{TP}{TP+FN}

灵敏度是在实际的正样本中,能够找到正样本的能力。 它和召回率的公式一样,它就是召回率。

2.特异度

特异度的计算公式为:

特异度  =\frac{TN}{TN+FP} 

特异度是指在实际所有的负样本中,找到正确负样本的能力。 

三、真正率、假正率 

1.真正率

真正率=召回率=灵敏度   = \frac{TP}{TP+FN}

真正率的含义是在所有实际的正样本下识别为正样本的概率。

2.假正率 

误判率 = 假正率 = 1 - 特异度 = \frac{FP}{TN+FP}

因为特异度是在实际的负样本中找到负样本的能力,1-特异度就代表它在所有实际的负样本中找正样本的能力,那这肯定不对啦,在负样本中怎么能找到正样本呢?所有这些正样本是错误的正样本。所以我们把这个概率也叫做假正率。 

在我们实际工作中,为了避免样本对于精确率和召回率的影响,可以使用TPR和FPR。

三、ROC、AUC

1.ROC

ROC曲线是我们在连续变化的阈值下,生成不同的正负样本,对应出不同的混淆矩阵,得到不同的TPR和FPR值所绘制出来的一条曲线,它表示TPR和FPR的关系。

图中有一条绿色的直线,这条绿的直线代表真正率和假正率概率一样,也就是这种分类概率和我们随机猜的概率一样,模型效果差,不能用。越靠近这条直线,模型效果越差,这条绿色直线下面的是指,绝大多数情况下,模型的正样本都预测错了,根本不能用。

我们希望的是,真正率高,假正率低,也就是靠近左上方(0,1)的位置,此时真正率接近于1,假正率接近于0

2.AUC

AUC是ROC曲线下面的面积,在绿色直线处,总面积1被一分为二,我们需要直线上面部分的面积,这一部分面积的值为0.5-1,小于0.5不能用。

  • 0.5 - 0.7:效果较低
  • 0.7 - 0.85:效果一般
  • 0.85 - 0.95:效果很好
  • 0.95 - 1:效果非常好,一般不可能。要对这个结果持怀疑态度,进一步分析模型的准确性。

四、KS值

横坐标为在连续的阈值变化下的正样本的个数(概率分数、模型预测数)。纵坐标为TPR和FPR。

KS为在某一阈值的正样本数(概率分数) 下,TPR-FPR的值。

KS = max(TPR - FPR)

KS用来评估模型好坏样本的区分程度,有时候人们会把0.6的KS值乘以100,说成60,也正确。

KS值的业务标准如下: 

  • KS<20:欠拟合,模型不具备可用性
  • KS>20 & KS<30:模型可用
  • KS>30 & KS<40 :模型预测能力优秀
  • KS>40:模型区分度很高。我们需要对这个结果持怀疑态度,进一步分析模型的准确性。

上边的业务标准是刘老师给出的,下面这个是网上大部分资料给出的。

  • KS: <20% : 差 
  • KS: 20%-40% : 一般 
  • KS: 41%-50% : 好 
  • KS: 51%-75% : 非常好
  • KS: >75% : 过高,需要谨慎的验证模型

业务标准根据不同的业务场景而调整,并不是一个统一的值。

如果模型的AUC或KS值很高,并不是一件好事情。我们要进一步分析模型的准确性,避免是因为数据不准确导致的。

五、总结

准确率,精准率,召回率,真正率,假正率,ROC/AUC-CSDN博客

参考文献: 刘海丰——《成为AI产品经理》

声明:本文是对于刘海丰老师《成为AI产品经理》课程重点的总结,自用,请勿传播。

相关文章:

成为AI产品经理——TPR、FPR、ROC、AUC

目录 一、PR图、BEP 1.PR图 2.BEP 二、灵敏度、特异度 1.灵敏度 2.特异度 三、真正率、假正率 1.真正率 2.假正率 三、ROC、AUC 1.ROC 2.AUC 四、KS值 一、PR图、BEP 1.PR图 二分类问题模型通常输出的是一个概率值&#xff0c;我们需要设定一个阈值&#xff…...

java: Internal error in the mapping processor: java.lang.NullPointerException

启动java项目出错&#xff0c;其他人工程没有问题&#xff0c;别着急。 java: Internal error in the mapping processor: java.lang.NullPointerException at org.mapstruct.ap.internal.processor.DefaultVersionInformation.createManifestUrl(DefaultVersionInformation.j…...

TCP知识点

TCP&#xff08;Transmission Control Protocol&#xff0c;传输控制协议&#xff09;是一种面向连接的、可靠的、基于字节流的传输层协议&#xff0c;广泛应用于互联网。下面是TCP的一些知识点&#xff1a; TCP是一种可靠的协议&#xff0c;采用三次握手建立连接和四次挥手断开…...

大语言模型(LLMs)在 Amazon SageMaker 上的动手实践(一)

本期文章&#xff0c;我们将通过三个动手实验从浅到深地解读和演示大语言模型&#xff08;LLMs&#xff09;&#xff0c;如何结合 Amazon SageMaker 的模型部署、模型编译优化、模型分布式训练等。 实验一&#xff1a;使用 Amazon SageMaker 构建基于开源 GPT-J 模型的对话机器…...

顶级数据恢复工具—— 最全的15个数据恢复软件榜单

在这个信息为王的数字时代&#xff0c;关键数据的丢失对个人和企业来说都可能是灾难性的。无论是由于意外删除、硬件故障还是恶意攻击&#xff0c;拥有强大的数据恢复解决方案都是至关重要的。在本综合指南中&#xff0c;我们将探索市场上最好的数据恢复软件&#xff0c;包括顶…...

【图像分类】【深度学习】【Pytorch版本】Inception-ResNet模型算法详解

【图像分类】【深度学习】【Pytorch版本】Inception-ResNet模型算法详解 文章目录 【图像分类】【深度学习】【Pytorch版本】Inception-ResNet模型算法详解前言Inception-ResNet讲解Inception-ResNet-V1Inception-ResNet-V2残差模块的缩放(Scaling of the Residuals)Inception-…...

Ubuntu 22.03 LTS 安装deepin-terminal 实现 终端 分屏

deepin-terminal 安装 源里面自带了这个软件&#xff0c;可以直接装 sudo apt install deepin-terminal 启动 按下Win键&#xff0c;输入deep即可快速检索出图标&#xff0c;点击启动 效果 分屏 CtrlShiftH 水平分割 CtrlShiftJ 垂直分割 最多分割成四个小窗口&#xff0…...

HTTP协议,Web框架回顾

HTTP 请求协议详情 -请求首行---》请求方式&#xff0c;请求地址&#xff0c;请求协议版本 -请求头---》key:value形式 -referer&#xff1a;上一次访问的地址 -user-agenet&#xff1a;客户端类型 -name&#xff1a;lqz -cookie&…...

el-checkbox 对勾颜色调整

对勾默认是白色 改的时候一直在试着改color人&#xff0c;其实不对。我用的是element ui 的复选框 /* 对勾颜色调整 */ .el-checkbox__inner::after{/* 是改这里的颜色 */border: 2px solid #1F7DFD; border-left: 0;border-top: 0;}...

系统管理精要:深度探索 Linux 监控与管理利器

前言 系统管理在 Linux 运维中扮演着至关重要的角色&#xff0c;涵盖了系统的配置、监控和维护。了解这些方面的工具和技术对于确保系统稳定运行至关重要。本文将着重介绍系统管理的关键部分&#xff0c;包括配置系统、监控系统状态和系统的日常维护&#xff0c;并以 top 和 vm…...

vue3之echarts渐变柱状图

vue3之echarts渐变柱状图 效果&#xff1a; 核心代码&#xff1a; <template><div class"abnormal"><div class"chart" ref"chartsRef"></div></div> </template><script setup> import * as echa…...

有一种浪漫,叫接触Linux

大家好&#xff0c;我是五月。 嵌入式开发 嵌入式开发产品必须依赖硬件和软件。 硬件一般使用51单片机&#xff0c;STM32、ARM&#xff0c;做成的产品以平板&#xff0c;手机&#xff0c;智能机器人&#xff0c;智能小车居多。 软件用的当然是以linux系统为蓝本&#xff0c…...

构建 App 的方法

目录 构建 App 使用 App 设计工具以交互方式构建 App 使用 MATLAB 函数以编程方式构建 App 构建实时编辑器任务 可以使用 MATLAB 来构建可以集成到各种环境中的交互式用户界面。可以构建两种类型的用户界面&#xff1a; App - 基于用户交互执行操作的自包含界面 实时编辑器…...

laravel实现发送邮件功能

Laravel提供了简单易用的邮件发送功能&#xff0c;使用SMTP、Mailgun、Sendmail等多种驱动程序&#xff0c;以及模板引擎将邮件内容进行渲染。 1.在项目目录.env配置email信息 MAIL_MAILERsmtp MAIL_HOSTsmtp.qq.com MAIL_PORT465 MAIL_FROM_ADDRESSuserqq.com MAIL_USERNAME…...

概要设计检查单、需求规格说明检查单

1、概要设计检查表 2、需求规格说明书检查表 概要&#xff08;结构&#xff09;设计检查表 工程名称 业主单位 承建单位 检查依据 1、设计方案、投标文件&#xff1b;2、合同&#xff1b;3、信息系统相关技术标准及安全规范&#xff1b; 检查类目 检查内容 检查…...

达梦列式存储和clickhouse基准测试

要验证达梦BigTable和ClickHouse的性能差异&#xff0c;您需要进行一系列基准测试。基准测试通常包括多个步骤&#xff0c;如准备测试环境、设计测试案例、执行测试、收集数据和分析结果。以下是您可以遵循的一般步骤&#xff1a; 准备测试环境&#xff1a; 确保两个数据库系统…...

【Web】NewStarCtf Week2 个人复现

目录 ①游戏高手 ②include 0。0 ③ez_sql ④Unserialize&#xff1f; ⑤Upload again! ⑥ R!!C!!E!! ①游戏高手 经典前端js小游戏 检索与分数相关的变量 控制台直接修改分数拿到flag ②include 0。0 禁了base64和rot13 尝试过包含/var/log/apache/access.log,ph…...

Python实现Windows服务自启动、禁用、启动、停止、删除

如果一个程序被服务监管&#xff0c;那么仅仅kill程序是无用的&#xff0c;还要把服务关掉 import win32service import win32serviceutildef EnableService(service_name):try:# 获取服务管理器scm win32service.OpenSCManager(None, None, win32service.SC_MANAGER_ALL_ACC…...

【华为OD题库-043】二维伞的雨滴效应-java

题目 普通的伞在二维平面世界中&#xff0c;左右两侧均有一条边&#xff0c;而两侧伞边最下面各有一个伞坠子&#xff0c;雨滴落到伞面&#xff0c;逐步流到伞坠处&#xff0c;会将伞坠的信息携带并落到地面&#xff0c;随着日积月累&#xff0c;地面会呈现伞坠的信息。 1、为了…...

百度手机浏览器关键词排名优化——提升关键词排名 开源百度小程序源码系统 附带完整的搭建教程

百度作为国内领先的搜索引擎&#xff0c;一直致力于为用户提供最优质的信息服务。在移动互联网时代&#xff0c;手机浏览器成为了用户获取信息的主要渠道。而小程序作为轻量级的应用程序&#xff0c;具有即用即走、无需下载等优势&#xff0c;越来越受到用户的青睐。然而&#…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

零基础设计模式——行为型模式 - 责任链模式

第四部分&#xff1a;行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习&#xff01;行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想&#xff1a;使多个对象都有机会处…...

在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?

uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件&#xff0c;用于在原生应用中加载 HTML 页面&#xff1a; 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...