当前位置: 首页 > news >正文

成为AI产品经理——TPR、FPR、ROC、AUC

目录

一、PR图、BEP

1.PR图

2.BEP 

二、灵敏度、特异度

1.灵敏度

2.特异度

三、真正率、假正率 

1.真正率

2.假正率 

三、ROC、AUC

1.ROC

2.AUC

四、KS值


一、PR图、BEP

1.PR图

二分类问题模型通常输出的是一个概率值,我们需要设定一个阈值,让大于这个阈值的时候为正样本,其余的为负样本。

如果我们选择不同的阈值,我们就可以得到不同的预测结果,也就可以得到不同的混淆矩阵,从而得到不同的precision值和recall值。P-R图是我们在连续变化的阈值下,得到的准确率和召回率的关系。(召回率作为横轴,将精确率作为纵轴)。

PR 图主要有以下用途:

  1. 权衡 Precision 和 Recall: PR 图帮助我们直观地理解在不同阈值下模型的 Precision 和 Recall 的权衡关系。这对于某些应用中 Precision 和 Recall 之间存在权衡关系的情况非常重要,例如在医学领域的疾病诊断中,我们可能更关注 Recall,以确保尽可能多地捕获患者的真实病情。

  2. 评估样本不平衡: 当数据集中的类别不平衡时,PR 图比 ROC 曲线更能准确地反映模型性能。在样本不平衡的情况下,ROC 曲线可能给出过于乐观的评估,而 PR 图更能反映模型在正类别上的性能。

  3. 选择适当的阈值: PR 图可以帮助选择适当的分类阈值,以满足特定任务的需求。根据应用场景,我们可能更关注 Precision 或 Recall,通过观察 PR 图可以更好地理解不同阈值下的模型表现。

  4. 比较模型性能: PR 图可用于比较不同模型的性能。具体来说,我们可以比较不同模型在保持较高 Precision 的同时实现较高 Recall 的能力,或者根据实际需求调整模型的阈值。

下图A模型的曲线完全包住C模型的曲线,我们就说A模型比C模型的效果好;

B模型的曲线完全包住C模型的曲线,我们就说B模型比C模型的效果好;

但是A模型和B模型的曲线有交叉,我们使用BEP进行比较。

2.BEP 

BEP是精确率和召回率的平衡点,P=R时,那一条线。如果,模型的PR曲线有交叉,我们可以根据BEP来判断模型的好坏。

BEP过于简单,我们常用F1值来比较模型。F1值是考虑了召回率和精确率的一个计算指标。

F1 = \frac{2*precision*recall}{precision+recall}

二、灵敏度、特异度

1.灵敏度

灵敏度的计算公式为:

灵敏度  = \frac{TP}{TP+FN}

灵敏度是在实际的正样本中,能够找到正样本的能力。 它和召回率的公式一样,它就是召回率。

2.特异度

特异度的计算公式为:

特异度  =\frac{TN}{TN+FP} 

特异度是指在实际所有的负样本中,找到正确负样本的能力。 

三、真正率、假正率 

1.真正率

真正率=召回率=灵敏度   = \frac{TP}{TP+FN}

真正率的含义是在所有实际的正样本下识别为正样本的概率。

2.假正率 

误判率 = 假正率 = 1 - 特异度 = \frac{FP}{TN+FP}

因为特异度是在实际的负样本中找到负样本的能力,1-特异度就代表它在所有实际的负样本中找正样本的能力,那这肯定不对啦,在负样本中怎么能找到正样本呢?所有这些正样本是错误的正样本。所以我们把这个概率也叫做假正率。 

在我们实际工作中,为了避免样本对于精确率和召回率的影响,可以使用TPR和FPR。

三、ROC、AUC

1.ROC

ROC曲线是我们在连续变化的阈值下,生成不同的正负样本,对应出不同的混淆矩阵,得到不同的TPR和FPR值所绘制出来的一条曲线,它表示TPR和FPR的关系。

图中有一条绿色的直线,这条绿的直线代表真正率和假正率概率一样,也就是这种分类概率和我们随机猜的概率一样,模型效果差,不能用。越靠近这条直线,模型效果越差,这条绿色直线下面的是指,绝大多数情况下,模型的正样本都预测错了,根本不能用。

我们希望的是,真正率高,假正率低,也就是靠近左上方(0,1)的位置,此时真正率接近于1,假正率接近于0

2.AUC

AUC是ROC曲线下面的面积,在绿色直线处,总面积1被一分为二,我们需要直线上面部分的面积,这一部分面积的值为0.5-1,小于0.5不能用。

  • 0.5 - 0.7:效果较低
  • 0.7 - 0.85:效果一般
  • 0.85 - 0.95:效果很好
  • 0.95 - 1:效果非常好,一般不可能。要对这个结果持怀疑态度,进一步分析模型的准确性。

四、KS值

横坐标为在连续的阈值变化下的正样本的个数(概率分数、模型预测数)。纵坐标为TPR和FPR。

KS为在某一阈值的正样本数(概率分数) 下,TPR-FPR的值。

KS = max(TPR - FPR)

KS用来评估模型好坏样本的区分程度,有时候人们会把0.6的KS值乘以100,说成60,也正确。

KS值的业务标准如下: 

  • KS<20:欠拟合,模型不具备可用性
  • KS>20 & KS<30:模型可用
  • KS>30 & KS<40 :模型预测能力优秀
  • KS>40:模型区分度很高。我们需要对这个结果持怀疑态度,进一步分析模型的准确性。

上边的业务标准是刘老师给出的,下面这个是网上大部分资料给出的。

  • KS: <20% : 差 
  • KS: 20%-40% : 一般 
  • KS: 41%-50% : 好 
  • KS: 51%-75% : 非常好
  • KS: >75% : 过高,需要谨慎的验证模型

业务标准根据不同的业务场景而调整,并不是一个统一的值。

如果模型的AUC或KS值很高,并不是一件好事情。我们要进一步分析模型的准确性,避免是因为数据不准确导致的。

五、总结

准确率,精准率,召回率,真正率,假正率,ROC/AUC-CSDN博客

参考文献: 刘海丰——《成为AI产品经理》

声明:本文是对于刘海丰老师《成为AI产品经理》课程重点的总结,自用,请勿传播。

相关文章:

成为AI产品经理——TPR、FPR、ROC、AUC

目录 一、PR图、BEP 1.PR图 2.BEP 二、灵敏度、特异度 1.灵敏度 2.特异度 三、真正率、假正率 1.真正率 2.假正率 三、ROC、AUC 1.ROC 2.AUC 四、KS值 一、PR图、BEP 1.PR图 二分类问题模型通常输出的是一个概率值&#xff0c;我们需要设定一个阈值&#xff…...

java: Internal error in the mapping processor: java.lang.NullPointerException

启动java项目出错&#xff0c;其他人工程没有问题&#xff0c;别着急。 java: Internal error in the mapping processor: java.lang.NullPointerException at org.mapstruct.ap.internal.processor.DefaultVersionInformation.createManifestUrl(DefaultVersionInformation.j…...

TCP知识点

TCP&#xff08;Transmission Control Protocol&#xff0c;传输控制协议&#xff09;是一种面向连接的、可靠的、基于字节流的传输层协议&#xff0c;广泛应用于互联网。下面是TCP的一些知识点&#xff1a; TCP是一种可靠的协议&#xff0c;采用三次握手建立连接和四次挥手断开…...

大语言模型(LLMs)在 Amazon SageMaker 上的动手实践(一)

本期文章&#xff0c;我们将通过三个动手实验从浅到深地解读和演示大语言模型&#xff08;LLMs&#xff09;&#xff0c;如何结合 Amazon SageMaker 的模型部署、模型编译优化、模型分布式训练等。 实验一&#xff1a;使用 Amazon SageMaker 构建基于开源 GPT-J 模型的对话机器…...

顶级数据恢复工具—— 最全的15个数据恢复软件榜单

在这个信息为王的数字时代&#xff0c;关键数据的丢失对个人和企业来说都可能是灾难性的。无论是由于意外删除、硬件故障还是恶意攻击&#xff0c;拥有强大的数据恢复解决方案都是至关重要的。在本综合指南中&#xff0c;我们将探索市场上最好的数据恢复软件&#xff0c;包括顶…...

【图像分类】【深度学习】【Pytorch版本】Inception-ResNet模型算法详解

【图像分类】【深度学习】【Pytorch版本】Inception-ResNet模型算法详解 文章目录 【图像分类】【深度学习】【Pytorch版本】Inception-ResNet模型算法详解前言Inception-ResNet讲解Inception-ResNet-V1Inception-ResNet-V2残差模块的缩放(Scaling of the Residuals)Inception-…...

Ubuntu 22.03 LTS 安装deepin-terminal 实现 终端 分屏

deepin-terminal 安装 源里面自带了这个软件&#xff0c;可以直接装 sudo apt install deepin-terminal 启动 按下Win键&#xff0c;输入deep即可快速检索出图标&#xff0c;点击启动 效果 分屏 CtrlShiftH 水平分割 CtrlShiftJ 垂直分割 最多分割成四个小窗口&#xff0…...

HTTP协议,Web框架回顾

HTTP 请求协议详情 -请求首行---》请求方式&#xff0c;请求地址&#xff0c;请求协议版本 -请求头---》key:value形式 -referer&#xff1a;上一次访问的地址 -user-agenet&#xff1a;客户端类型 -name&#xff1a;lqz -cookie&…...

el-checkbox 对勾颜色调整

对勾默认是白色 改的时候一直在试着改color人&#xff0c;其实不对。我用的是element ui 的复选框 /* 对勾颜色调整 */ .el-checkbox__inner::after{/* 是改这里的颜色 */border: 2px solid #1F7DFD; border-left: 0;border-top: 0;}...

系统管理精要:深度探索 Linux 监控与管理利器

前言 系统管理在 Linux 运维中扮演着至关重要的角色&#xff0c;涵盖了系统的配置、监控和维护。了解这些方面的工具和技术对于确保系统稳定运行至关重要。本文将着重介绍系统管理的关键部分&#xff0c;包括配置系统、监控系统状态和系统的日常维护&#xff0c;并以 top 和 vm…...

vue3之echarts渐变柱状图

vue3之echarts渐变柱状图 效果&#xff1a; 核心代码&#xff1a; <template><div class"abnormal"><div class"chart" ref"chartsRef"></div></div> </template><script setup> import * as echa…...

有一种浪漫,叫接触Linux

大家好&#xff0c;我是五月。 嵌入式开发 嵌入式开发产品必须依赖硬件和软件。 硬件一般使用51单片机&#xff0c;STM32、ARM&#xff0c;做成的产品以平板&#xff0c;手机&#xff0c;智能机器人&#xff0c;智能小车居多。 软件用的当然是以linux系统为蓝本&#xff0c…...

构建 App 的方法

目录 构建 App 使用 App 设计工具以交互方式构建 App 使用 MATLAB 函数以编程方式构建 App 构建实时编辑器任务 可以使用 MATLAB 来构建可以集成到各种环境中的交互式用户界面。可以构建两种类型的用户界面&#xff1a; App - 基于用户交互执行操作的自包含界面 实时编辑器…...

laravel实现发送邮件功能

Laravel提供了简单易用的邮件发送功能&#xff0c;使用SMTP、Mailgun、Sendmail等多种驱动程序&#xff0c;以及模板引擎将邮件内容进行渲染。 1.在项目目录.env配置email信息 MAIL_MAILERsmtp MAIL_HOSTsmtp.qq.com MAIL_PORT465 MAIL_FROM_ADDRESSuserqq.com MAIL_USERNAME…...

概要设计检查单、需求规格说明检查单

1、概要设计检查表 2、需求规格说明书检查表 概要&#xff08;结构&#xff09;设计检查表 工程名称 业主单位 承建单位 检查依据 1、设计方案、投标文件&#xff1b;2、合同&#xff1b;3、信息系统相关技术标准及安全规范&#xff1b; 检查类目 检查内容 检查…...

达梦列式存储和clickhouse基准测试

要验证达梦BigTable和ClickHouse的性能差异&#xff0c;您需要进行一系列基准测试。基准测试通常包括多个步骤&#xff0c;如准备测试环境、设计测试案例、执行测试、收集数据和分析结果。以下是您可以遵循的一般步骤&#xff1a; 准备测试环境&#xff1a; 确保两个数据库系统…...

【Web】NewStarCtf Week2 个人复现

目录 ①游戏高手 ②include 0。0 ③ez_sql ④Unserialize&#xff1f; ⑤Upload again! ⑥ R!!C!!E!! ①游戏高手 经典前端js小游戏 检索与分数相关的变量 控制台直接修改分数拿到flag ②include 0。0 禁了base64和rot13 尝试过包含/var/log/apache/access.log,ph…...

Python实现Windows服务自启动、禁用、启动、停止、删除

如果一个程序被服务监管&#xff0c;那么仅仅kill程序是无用的&#xff0c;还要把服务关掉 import win32service import win32serviceutildef EnableService(service_name):try:# 获取服务管理器scm win32service.OpenSCManager(None, None, win32service.SC_MANAGER_ALL_ACC…...

【华为OD题库-043】二维伞的雨滴效应-java

题目 普通的伞在二维平面世界中&#xff0c;左右两侧均有一条边&#xff0c;而两侧伞边最下面各有一个伞坠子&#xff0c;雨滴落到伞面&#xff0c;逐步流到伞坠处&#xff0c;会将伞坠的信息携带并落到地面&#xff0c;随着日积月累&#xff0c;地面会呈现伞坠的信息。 1、为了…...

百度手机浏览器关键词排名优化——提升关键词排名 开源百度小程序源码系统 附带完整的搭建教程

百度作为国内领先的搜索引擎&#xff0c;一直致力于为用户提供最优质的信息服务。在移动互联网时代&#xff0c;手机浏览器成为了用户获取信息的主要渠道。而小程序作为轻量级的应用程序&#xff0c;具有即用即走、无需下载等优势&#xff0c;越来越受到用户的青睐。然而&#…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1&#xff09;下载安装包2&#xff09;配置环境变量3&#xff09;安装镜像4&#xff09;node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1&#xff09;使用 http-server2&#xff09;详解 …...

Modbus RTU与Modbus TCP详解指南

目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...

comfyui 工作流中 图生视频 如何增加视频的长度到5秒

comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗&#xff1f; 在ComfyUI中实现图生视频并延长到5秒&#xff0c;需要结合多个扩展和技巧。以下是完整解决方案&#xff1a; 核心工作流配置&#xff08;24fps下5秒120帧&#xff09; #mermaid-svg-yP…...