【Git】修改提交信息(单次、批量)
文章目录
- 修改最近一次 commit 的提交信息
- 修改某次 commit 的提交信息
- 方法总结
修改最近一次 commit 的提交信息
git commit --amend -m "new message"
修改某次 commit 的提交信息
git log --oneline
运行结果如下2f80f1b commit 4
9ee990a 第三次提交
40f2f03 commit 2
8ec9f83 first commit
实战:将 9ee990a 的提交信息改为:commit 3
# 待修改提交的前一个提交的修订号
git rebase -i 40f2f03
运行结果如下pick 9ee990a commit 第三次提交
pick 2f80f1b commit 4
进入编辑模式(按 i),将第一行的 pick 改为 e(方向键移动光标),保存退出(按 ESC,输入:wq,回车)
此时 git 会有如下提示
Stopped at 9ee990a... 第三次提交
You can amend the commit now, withgit commit --amendOnce you are satisfied with your changes, rungit rebase --continue
由提示得知,先运行第一个命令修改提交信息
git commit --amend -m "commit 3"
修改好后再运行第二个命令保存
git rebase --continue
若要批量修改,那就将多个 pick 改为 e,然后依次按顺序重复以上两个命令
方法总结
修改最近一次提交信息,可以用 git commit --amend,也可以用git rebase -i,推荐使用前者,更方便
修改某次提交信息,用git rebase -i,pick 改为 e,再通过git commit --amend、git rebase --continue完成后续操作
批量修改提交信息,用git rebase -i,多个 pick 改为 e,再通过git commit --amend、git rebase --continue完成多个后续操作
还可用git filter-branch -f --env-filter编写脚本完成批量修改
相关文章:
【Git】修改提交信息(单次、批量)
文章目录 修改最近一次 commit 的提交信息修改某次 commit 的提交信息方法总结 修改最近一次 commit 的提交信息 git commit --amend -m "new message"修改某次 commit 的提交信息 git log --oneline 运行结果如下2f80f1b commit 4 9ee990a 第三次提交 40f2f03 comm…...
Grafana Panel组件跳转、交互实现
程序员的公众号:源1024,获取更多资料,无加密无套路! 最近整理了一份大厂面试资料《史上最全大厂面试题》,Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …...
人工智能|机器学习——感知器算法原理与python实现
感知器算法是一种可以直接得到线性判别函数的线性分类方法,它是基于样本线性可分的要求下使用的。 一、线性可分与线性不可分 为了方便讨论,我们蒋样本增加了以为常数,得到增广样向量 y(1;;;...;),则n个样本的集合为&a…...
【论文阅读笔记】Prompt-to-Prompt Image Editing with Cross-Attention Control
【论文阅读笔记】Prompt-to-Prompt Image Editing with Cross-Attention Control 个人理解思考基本信息摘要背景挑战方法结果 引言方法论结果讨论引用 个人理解 通过将caption的注意力图注入到目标caption注意力中影响去噪过程以一种直观和便于理解的形式通过修改交叉注意力的…...
Echarts legend图例配置项 设置位置 显示隐藏
Echarts 官网完整配置项 https://echarts.apache.org/zh/option.html#legend 配置项 legend: { }设置图例为圆形 icon: circle,//设置图例为圆形设置图例位置 top: 20%//距离顶部百分之20//y:bottom 在底部显示设置图例 宽度 高度 itemWidth: 10,//设置图例宽度 itemHeight: …...
C#每天复习一个重要小知识day3:随机数的生成
目录 格式: 生成随机数: 生成一个0-100的随机数: 以下是更详细的代码示例: 在C#中,可以使用Random类来生成随机数。这个类提供了多种方法来生成不同类型的随机数。 格式: Random 随机变量名(r) new …...
Java后端使用XWPFDocument生成word文档,踩坑
以下都是借鉴网上内容: 环境 纯后端, java, spring项目 maven管理. maven内容: <dependency><groupId>org.apache.poi</groupId><artifactId>poi-ooxml</artifactId><version>3.16</version></dependency><dependency>…...
asp.net core HttpContextAccessor类
在 ASP.NET Core 中 ,HttpContextAccessor 是一个用于访问当前 HTTP 请求的工具类。它通常用于在应用程序中获取当前 HTTP 请求的上下文信息,例如请求的路由、头部信息、用户身份验证状态等。 HttpContextAccessor 类通常在需要访问当前 HTTP 请求上下文…...
微服务--04--SpringCloudGateway 网关
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1.网关路由1.1 认识网关在SpringCloud当中,提供了两种网关实现方案: 1.2.快速入门1.3.路由过滤 2.网关登录校验2.1.鉴权思路分析2.2.网关过滤…...
Java程序连接 nacos集群
我们在bootstrap.yml文件里可以直接连一个nacos集群的. 架构如下 没错,我们程序直连的是通过Nginx的,利用nginx的反向代理来做到连接nacos集群. 我们先把nginx的配置贴上来 upstream cluster{server 127.0.0.1:8848;server 127.0.0.1:8849;server 127.0.0.1:8850; }server{l…...
【深度学习】参数优化和训练技巧
寻找合适的学习率(learning rate) 学习率是一个非常非常重要的超参数,这个参数呢,面对不同规模、不同batch-size、不同优化方式、不同数据集,其最合适的值都是不确定的,我们无法光凭经验来准确地确定lr的值,我们唯一可…...
CeresPCL 曲线拟合之三次多项式
文章目录 一、简介2.1 实现步骤二、实现代码三、实现效果参考资料一、简介 2.1 实现步骤 (1)构建代价函数。假设我们得到了一组数据,也知晓该数据是用曲线方程: y = a x 3 + b x 2 + c x +...
小白备战蓝桥杯:Java基础语法
一、注释 IDEA注释快捷键:Ctrl / 单行注释: //注释信息 多行注释: /* 注释信息 */ 二、字面量 常用数据:整数、小数、字符串(双引号)、字符(单引号)、布尔值(tr…...
C#面向对象
过程类似函数只能执行没有返回值 函数不仅能执行,还可以返回结果 1、面向过程 a 把完成某一需求的所有步骤 从头到尾 逐步实现 b 根据开发需求,将某些 功能独立 的代码 封装 成一个又一个 函数 c 最后完成的代码就是顺序的调用不同的函数 特点 1、…...
智能优化算法应用:基于蝙蝠算法无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于蝙蝠算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于蝙蝠算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蝙蝠算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…...
【栈和队列(1)(逆波兰表达式)】
文章目录 前言什么是栈(Stack)栈方法栈的模拟实现链表也可以实现栈逆波兰表达式逆波兰表达式在栈中怎么使用 前言 什么是栈(Stack) 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶࿰…...
Blazor Table 实现获取当前选中行的功能
这里需要使用到OnClickRowCallBack事件 后台使用案例...
Flask Echarts 实现历史图形查询
Flask前后端数据动态交互涉及用户界面与服务器之间的灵活数据传递。用户界面使用ECharts图形库实时渲染数据。它提供了丰富多彩、交互性强的图表和地图,能够在网页上直观、生动地展示数据。ECharts支持各种常见的图表类型,包括折线图、柱状图、饼图、散点…...
【漫谈】信创
近些年来,自主创新绝对是高频词汇。 以往是供应链、芯片领域,现在终于到了信息领域。 近期,从上至下、从中央到地方、从政府到国企,各层面、各行业、各领域都在提及“信创”。 信创是个大工程,从计算机通用处理器、…...
linux wget --no-check-certificate
如果您希望每次使用wget命令时都跳过SSL证书检查,可以将–no-check-certificate参数添加到wget的默认配置文件中。 请按照以下步骤进行操作: vi ~/.wgetrc# 插入内容 check_certificate off保存并关闭文件。 现在,wget命令将在每次使用时自…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法
深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...
HashMap中的put方法执行流程(流程图)
1 put操作整体流程 HashMap 的 put 操作是其最核心的功能之一。在 JDK 1.8 及以后版本中,其主要逻辑封装在 putVal 这个内部方法中。整个过程大致如下: 初始判断与哈希计算: 首先,putVal 方法会检查当前的 table(也就…...
多模态图像修复系统:基于深度学习的图片修复实现
多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...
