当前位置: 首页 > news >正文

使用Python实现SVM来解决二分类问题

下面是一个使用Python实现SVM来解决二分类问题的例子:

# 导入所需的库
from sklearn.datasets import make_blobs
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
import matplotlib.pyplot as plt# 生成一个二分类数据集
X, y = make_blobs(n_samples=100, centers=2, random_state=42)# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建并训练SVM模型
svm = SVC(kernel='linear')
svm.fit(X_train, y_train)# 在测试集上进行预测
y_pred = svm.predict(X_test)# 绘制数据点和分隔超平面
plt.scatter(X[:, 0], X[:, 1], c=y, cmap='bwr')
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = svm.decision_function(xy).reshape(XX.shape)
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,linestyles=['--', '-', '--'])
ax.scatter(svm.support_vectors_[:, 0], svm.support_vectors_[:, 1], s=100,linewidth=1, facecolors='none', edgecolors='k')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.title('SVM Classifier')
plt.show()

在此示例中,我们使用make_blobs函数生成一个包含两个类别的二分类数据集。然后,我们使用train_test_split函数将数据集拆分为训练集和测试集。接下来,我们创建了一个SVC对象作为SVM模型,并使用fit方法对模型进行训练。然后,我们使用训练好的模型在测试集上进行预测,并将预测结果保存在y_pred变量中。

最后,我们使用Matplotlib库绘制数据点和分隔超平面。scatter函数用于绘制数据点,不同类别的点使用不同的颜色表示。decision_function方法用于计算分隔超平面,然后使用contour函数绘制分隔超平面。同时,我们还使用support_vectors_属性绘制了支持向量的圆圈表示。

请确保在运行代码之前安装所需的库(如scikit-learn和Matplotlib)。此代码可根据实际问题进行调整和扩展。

如果你想更深入地了解人工智能的其他方面,比如机器学习、深度学习、自然语言处理等等,也可以点击这个链接,我按照如下图所示的学习路线为大家整理了100多G的学习资源,基本涵盖了人工智能学习的所有内容,包括了目前人工智能领域最新顶会论文合集和丰富详细的项目实战资料,可以帮助你入门和进阶。

人工智能交流群(大量资料)
在这里插入图片描述

相关文章:

使用Python实现SVM来解决二分类问题

下面是一个使用Python实现SVM来解决二分类问题的例子: # 导入所需的库 from sklearn.datasets import make_blobs from sklearn.model_selection import train_test_split from sklearn.svm import SVC import matplotlib.pyplot as plt# 生成一个二分类数据集 X, …...

合并PDF出现OOM异常

优化方法一:使用PdfSmartCopy类代替PdfCopy类。这个类可以在合并PDF文件时,检测并消除重复的对象,从而减少内存的占用。您可以参考以下代码示例: //创建一个Document对象 Document document new Document();//创建一个PdfSmartC…...

c语言-数据结构-链式二叉树

目录 1、二叉树的概念及结构 2、二叉树的遍历概念 2.1 二叉树的前序遍历 2.2 二叉树的中序遍历 2.3 二叉树的后序遍历 2.4 二叉树的层序遍历 3、创建一颗二叉树 4、递归方法实现二叉树前、中、后遍历 4.1 实现前序遍历 4.2 实现中序遍历 4.3 实现后序遍历 5、…...

DelayQueue介绍

5.1 DelayQueue介绍&应用 DelayQueue就是一个延迟队列,生产者写入一个消息,这个消息还有直接被消费的延迟时间。 需要让消息具有延迟的特性。 DelayQueue也是基于二叉堆结构实现的,甚至本事就是基于PriorityQueue实现的功能。二叉堆结构…...

centos8 redis 6.2.6源码安装+主从哨兵

文章目录 centos8 redis 6.2.6源码安装主从哨兵下载解压编译安装配置配置systemd服务启停及开机启动登录验证主从同步配置哨兵哨兵注册systemd centos8 redis 6.2.6源码安装主从哨兵 单机安装 下载解压 cd /data wget http://download.redis.io/releases/redis-6.2.6.tar.gz…...

机器学习之危险品车辆目标检测

危险品的运输涉及从离开仓库到由车辆运输到目的地的风险。监控事故、车辆运动动态以及车辆通过特定区域的频率对于监督车辆运输危险品的过程至关重要。 在线工具推荐: 三维数字孪生场景工具 - GLTF/GLB在线编辑器 - Three.js AI自动纹理化开发 - YOLO 虚幻合成数…...

DHCP协议及实验omnipeek抓包工具分析 IPv4协议

一 抓包命令 adb shell tcpdump -i wlan0 -w /data/tcpdump.pcap 抓包后截图如下 二 DHCP是什么 2.1 DHCP定义 DHCP( Dynamic Host Configuration Protocol, 动态主机配置协议)定义: 存在于应用层(OSI) 前身是BOOTP(Bootstrap Protocol)协议 是一个使用UDP(User …...

考过了PMP,面试的时候应该怎么办?

近期喜番在后台收到了很多同学们的私信,表示自己已经过了8月份的PMP考试,开始着手往项目管理岗位转型,但是对于项目管理岗位的面试却一筹莫展。放轻松,大家的需求喜番都了解了,喜番给大家总结了一些项目经理在面试的时…...

技巧-PyTorch中num_works的作用和实验测试

简介 在 PyTorch 中,num_workers 是 DataLoader 中的一个参数,用于控制数据加载的并发线程数。它允许您在数据加载过程中使用多个线程,以提高数据加载的效率。 具体来说,num_workers 参数指定了 DataLoader 在加载数据时将创建的…...

Android:FragmentTransaction

上一篇Android:FragmentTransaction我们大概介绍了FragmentManager的大致工作流程,知道了每个动作都会添加到Op队列里,并由FragmentTransaction进行管理,那么我们就来看看FragmentTransaction的具体内容。 首先FragmentTransacti…...

5.golang字符串的拆解和拼接

字符串是 Go 中的字节切片。可以通过将一组字符括在双引号中来创建字符串" "。Go 中的字符串是兼容Unicode编码的,并且是UTF-8编码的。 访问字符串的单个字节或字符 由于字符串是字节切片,因此可以访问字符串的每个字节。 func printStr(s …...

配置 Mantis 在 Windows 上的步骤

配置 Mantis Bug Tracker 在 Windows 上的步骤 Mantis Bug Tracker 是一款开源的缺陷跟踪系统,用于管理软件开发中的问题和缺陷。在 Windows 环境下配置 Mantis 可以帮助开发者更方便地进行项目管理。以下是一个详细的教程,包含了 EasyPHP Devserver 和…...

Android 单元测试初体验(二)-断言

[TOC](Android 单元测试初体验(二)-断言) 前言 当初在学校学安卓的时候,老师敢教学进度,翻到单元测试这一章节的时候提了两句,没有把单元测试当重点讲,只是说我们工作中几乎不会用到,果真在之前的几年工作当中我真的没…...

通过ros系统中websocket中发送sensor_msgs::Image数据给web端显示

通过ros系统中websocket中发送sensor_msgs::Image数据给web端显示(一) 图片数据转成base64编码方式 #include <ros/ros.h> #include <signal.h> #include <sensor_msgs/Image.h> #include <message_filters/subscriber.h> #include <message_filt…...

【 Kubernetes 风云录 】- Istio 应用多版本流量控制

文章目录 原理实现DeploymentVirtualServiceDestinationRule 约束部署 目的: 根据不同的引擎版本&#xff0c;可以把请求发送到指定的引擎上。可以实现版本降级。 原理 Istio通过VirtualService和DestinationRule两个资源对象来实现流量管理&#xff0c;其中VirtualService用于…...

比尔盖茨:GPT-5不会比GPT-4好多少,生成式AI已达到极限

比尔盖茨一句爆料&#xff0c;成为机器学习社区热议焦点&#xff1a; “GPT-5不会比GPT-4好多少。” 虽然他已不再正式参与微软的日常运营&#xff0c;但仍在担任顾问&#xff0c;并且熟悉OpenAI领导团队的想法。 消息来自德国《商报》&#xff08;Handelsblatt&#xff09;对…...

let const 与var的区别

1、let可以形成块级作用域&#xff0c;在es6之前javascript只有函数作用域&#xff0c;没有块级作用域。在es6之前实现块级作用域: 2、可以看到通过一个立即执行函数表达式&#xff0c;我们实现了一个局部作用域或者块级作用域&#xff0c;但是有了let之后就不需要写这样的代…...

git 把项目托管到码云

码云&#xff1a; 把项目托管到码云 1.注册并微活码云账号(https://gitee.com/] 2.牛成井前博 SSH公钥 (运行 ssh -t gitgitee.com 构测 SSH 公明是否有开成功) 3.创建率户的码人伦;库 4.把本地项口上传到码云对应的空白仓库中 第一&#xff1a;上传个新项目 cd existing_git_…...

sCrypt 现已支持各类主流前端框架

sCrypt 现已支持各类主流前端框架&#xff0c;包括&#xff1a; ReactNext.jsAngularSvelteVue 3.x or 2.x bundled with Vite or Webpack 通过在这些支持的前端框架中集成sCrypt开发环境&#xff0c;你可以直接在前端项目里访问合约实例和调用合约&#xff0c;方便用户使用Se…...

leetcode:2549. 统计桌面上的不同数字(python3解法)

难度&#xff1a;简单 给你一个正整数 n &#xff0c;开始时&#xff0c;它放在桌面上。在 109 天内&#xff0c;每天都要执行下述步骤&#xff1a; 对于出现在桌面上的每个数字 x &#xff0c;找出符合 1 < i < n 且满足 x % i 1 的所有数字 i 。然后&#xff0c;将这些…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用&#xff1a;作为微服务架构的网关&#xff0c;统一入口&#xff0c;处理所有外部请求。 核心能力&#xff1a; 路由转发&#xff08;基于路径、服务名等&#xff09;过滤器&#xff08;鉴权、限流、日志、Header 处理&#xff09;支持负…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

.Net框架,除了EF还有很多很多......

文章目录 1. 引言2. Dapper2.1 概述与设计原理2.2 核心功能与代码示例基本查询多映射查询存储过程调用 2.3 性能优化原理2.4 适用场景 3. NHibernate3.1 概述与架构设计3.2 映射配置示例Fluent映射XML映射 3.3 查询示例HQL查询Criteria APILINQ提供程序 3.4 高级特性3.5 适用场…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

Opencv中的addweighted函数

一.addweighted函数作用 addweighted&#xff08;&#xff09;是OpenCV库中用于图像处理的函数&#xff0c;主要功能是将两个输入图像&#xff08;尺寸和类型相同&#xff09;按照指定的权重进行加权叠加&#xff08;图像融合&#xff09;&#xff0c;并添加一个标量值&#x…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...