Linguistic Steganalysis in Few-Shot Scenario论文阅读笔记
TIFS期刊 A类期刊
新知识点

Introduction
Linguistic Steganalysis in Few-Shot Scenario模型是个预训练方法。
评估了四种文本加密分析方法,TS-CSW、TS-RNN、Zou、SeSy,用于分析和训练的样本都由VAE-Stego生产(编码方式使用AC编码)。
实验是对比在少样本的情况下,各个模型的效果,当训练样本少于10的时候(few-shot),上面提到的TS-CSW和TS-RNN的表现都不好。
Zou和SeSy的方法用了pre-trained language mode,当训练标记样本到达1000的时候表现更好。
TS-CSW和TS-RNN的方法当样本达到10000的时候表现也很好。
表明,现有的分析网络需要大量样本作为训练的铺垫。
之前的文章 Few-shot text steganalysis based on attentional meta-learner[30]这篇文章考虑了few-shot的问题,但是作者的评价是:
Although this linguistic steganalysis method performs well when combined with multi-task scenario, there are some
problems in practical applications. Firstly, this method may not be able to demonstrate its advantages when there are
too few labeled samples to constitute multi-task, which limits its scope of application. Secondly, it is time-consuming
and labor-intensive to label samples accurately with various embedding rates and steganography algorithms
为了分析现实世界的实用场景,这篇文章只关注只有少量标记样本的实际场景(practiacl scenario)。
实验
第一阶段用 labeled data 去 fune-tune pretrained language model
第二阶段用 unlabeled data去进行 self-training(这个没太懂场景和效果问题)

总结的文本分析所用的方法和模型。👆

这是作者所用的模型,她提出了一个概念是,在slef-training的模型中,通过无标签(不知道是否是stego还是正常的cover)的文本来进行分析,选择more obvious and easier samples去标记pseudo-labeled(伪标记) dataset--------- D p D_p Dp。 D p D_p Dp便于后续的训练过程,提取和学习足够和更明显的特征,逐渐澄清分布差异。我们可以重复这个过程,然后得到了一种有效的少镜头语言步进分析方法。
basic model
对于基础模型,通过已标记数据集 D l D_l Dl来训练模型 B W ( ∗ ) B^W(*) BW(∗)(Bert)。
训练的损失函数是:

N s N_s Ns是batch size,y_hat是预测结果,y是真实结果。
Self-Training Framework

其中的MC dropout是一种选择模型确定性较大的label给数据贴上。(个人理解类似于max_pooling,通过多次的选取特征明显的值来获取模型最能分辨的一些语句)。
MC dropout
其中 6 ,7 ,8 ,9 ,10几个公式在论文中展示了,效果就是从无标签的文本中选出最大特征的数据(这种数据对于basic model的训练效果最佳),从而实现对于整个模型的正循环的训练。
实验
dataset
使用IMDB和Twitter、News的文本,然后使用BERT-LSTM的架构训练一个VAE-stego的加密模型,对于每个模型,都使用了HC(Huffman Coding)和AC(Arithmetic Coding)两种编码方式来实现。
选择了嵌入率是,HC的candidate pool size 设为了32,每个单词的平均嵌入bit约为5。
AC的candidate pool size 设为了dictionary size,每个单词的平均嵌入bit约为7。
experimental settings
实验模型使用的bert,12层transformer,hidden dimension为768, 最大句子长度是128。
相同的steganalysis methods,做了对比试验,都使用bert作为基本模型,使用了 Zou,SeSy和FSStega进行了对比,在训练labeled sample小于等于10的情况下,作者的准确率(acc)要高于其他几个10%左右。

performance on unlabeled dataset
为了模拟真实场景(因为真实场景所含有的加密的样本比较少),作者把Cover:Stego的比例从2:1调整到1:0。然后在IMDB数据集上面的AC编码进行训练。由于训练的样本较少,基础模型不稳地,所以这次训练选择使用30个banlance labeled samples对之前的basic model进行再训练,然后再用unbalanced(正负样本比例不均衡) 和 unlabeled dataset对self-training进行训练。

Performance on Unlabeled Datasets With Mixed Language Styles
把三个数据集混合进行训练,按占比不同做新的数据集训练,然后按照训练的步骤再进行实验分类。

a是只进行basic model训练后的分类结果,b是通过unlabeled数据集训练后的分类结果,c是把a和b训练好的最终模型,来进行分类的结果(b产生的sample再进行a训练,把a的模型训练到最佳)。
Generality Test
一共六个数据集,选用了IMDB的AC编码的数据集,来进行对其他5个数据集的验证测试。

Efficiency Test

训练好的模型,做加密分析检测一次所需要的时间/内(显)存👆。
Hyper-Parameters Adoption
其中 θ θ θ是当unlableed产生假标记的数据后,labeled的数据(原始数据)再放进去训练basic model的比例(100%)则为完全的有监督学习。

其中的 α α α是等式9的可更改选择加标签数据的比例。

作者做的实验是真的全面,佩服!
相关文章:
Linguistic Steganalysis in Few-Shot Scenario论文阅读笔记
TIFS期刊 A类期刊 新知识点 Introduction Linguistic Steganalysis in Few-Shot Scenario模型是个预训练方法。 评估了四种文本加密分析方法,TS-CSW、TS-RNN、Zou、SeSy,用于分析和训练的样本都由VAE-Stego生产(编码方式使用AC编码)。 实验是对比在少样…...
详细学习Pyqt5的4种项目部件(Item Widget)
Pyqt5相关文章: 快速掌握Pyqt5的三种主窗口 快速掌握Pyqt5的2种弹簧 快速掌握Pyqt5的5种布局 快速弄懂Pyqt5的5种项目视图(Item View) 快速弄懂Pyqt5的4种项目部件(Item Widget) 快速掌握Pyqt5的6种按钮 快速掌握Pyqt5的10种容器&…...
notepad++ 插件JSONView安装
1,前提 开发过程中经常需要处理json格式语句,需要对json数据格式化处理,因为使用的是虚拟机内开发,所以没法连接外网,只能在本地电脑下载插件后,然后上传到虚拟机中,进行安装使用。 2…...
AKConv:具有任意采样形状和任意数目参数的卷积核
文章目录 摘要1、引言2、相关工作3、方法3.1、定义初始采样位置3.2、可变卷积操作3.3、扩展AKConv3.3、扩展AKConv 4、实验4.1、在COCO2017上的目标检测实验4.2、在VOC 712上的目标检测实验4.3、在VisDrone-DET2021上的目标检测实验4.4、比较实验4.5、探索初始采样形状 5、分析…...
如何使用C++开发集群服务
开发集群服务需要掌握以下技术: 分布式系统原理:了解集群的概念、工作原理、负载均衡、容错等相关概念。 网络编程:掌握Socket编程和HTTP协议等。 C编程:熟练掌握C语言的基础知识和STL等常用库。 多线程编程:了解线…...
docker安装以及idea访问docker
其他目录: docker 安装环境: https://blog.csdn.net/gd898989/article/details/134570167 docker 打包java包,并运行(有空更新) url “” docker 打包vue (有空更新) url “” docker 多服务 (…...
激光切割头组件中喷嘴的作用是什么
喷嘴是一个不可忽视的部件。尽管喷嘴并不起眼,却有着重要的作用;喷嘴一般是与激光切割头同轴的,且形状多样:圆柱形、锥形、缩放型等。 喷嘴的口径尺寸时不相同的,大口径的喷嘴对聚焦来的激光束没有很严苛的要求;而口径…...
腾讯云双11活动最后一天,错过再等一年!
腾讯云双11活动已经进入尾声,距离活动结束仅剩最后一天,记得抓住这次上云好时机,错过这次,就要等到下一年才能享受到这样的优惠力度了! 活动地址: 点此直达腾讯云双11活动主会场 活动详情: 1…...
Java实现飞翔的鸟小游戏
Java实现飞翔的鸟小游戏 1.准备工作 创建一个新的Java项目命名为“飞翔的鸟”,并在src中创建一个包命名为“com.qiku.bird",在这个包内分别创建4个类命名为**“Bird”、“BirdGame”、“Column”、“Ground”,并向需要的图片**素材导入…...
Python网络请求初级篇:使用Requests库抓取和解析数据
在网络编程中,请求和接收数据是最常见的任务之一。Python的Requests库提供了丰富的功能,使得HTTP请求变得非常简单。在本文中,我们将了解如何使用Requests库发起HTTP请求,并解析返回的数据。 一、安装Requests库 首先࿰…...
详解API开发【电商平台API封装商品详情SKU数据接口开发】
1、电商API开发 RESTful API的设计 RESTful API是一种通过HTTP协议发送和接收数据的API设计风格。它基于一些简单的原则,如使用HTTP动词来操作资源、使用URI来标识资源、使用HTTP状态码来表示操作结果等等。在本文中,我们将探讨如何设计一个符合RESTfu…...
后端项目连接数据库-添加MyBatis依赖并检测是否成功
一.在pom.xml添加Mybatis相关依赖 在Spring Boot项目中,编译时会自动加载项目依赖,然后使用依赖包。 需要在根目录下pom.xml文件中添加Mybatis依赖项 <!-- Mybatis整合Spring Boot的依赖项 --> <dependency><groupId>org.mybatis.s…...
C++ CryptoPP使用RSA加解密
Crypto (CryptoPP) 是一个用于密码学和加密的 C 库。它是一个开源项目,提供了大量的密码学算法和功能,包括对称加密、非对称加密、哈希函数、消息认证码 (MAC)、数字签名等。Crypto 的目标是提供高性能和可靠的密码学工具,以满足软件开发中对…...
从实践角度深入探究数据驱动和关键字驱动测试方法!
数据驱动 数据驱动,指在软件测试领域当中的数据驱动测试(Data-Driven Testing,简称DDT)是⼀种软件测试⽅法,在不同的数据下重复执⾏相同顺序的测试步骤,测试脚本从数据源读取测试数据,⽽不使⽤…...
Unity收费对谁影响最大
Unity的收费政策对以下几类人群影响最大: 游戏开发商:Unity收费政策中最直接的影响对象就是游戏开发商。对于那些使用Unity引擎制作游戏的开发商来说,他们将需要考虑新的许可证费用和服务费用,这可能会对他们的盈利和发展产生影响…...
信号收尾.
sigaction 信号捕捉 它也是信号捕捉,不仅能处理普通信号还能处理实时信号,但我们不管实时信号 我们发现函数名和形参中结构体名一样都是sigaction,这在c/c中允许吗? 不建议,但是可以 signo你要捕捉几号信号 输入型参…...
maven 常用命令解析
目录 maven 是什么 Maven 目录结构 maven 常用命令解析 mvn clean mvn validate mvn compile mvn test mvn package mvn verify mvn install mvn site mvn deploy maven 是什么 Maven 是一个流行的项目管理和构建工具,用于帮助开发人员管理 Java 项目的…...
ESP32-Web-Server编程-JS 基础 1
ESP32-Web-Server编程-JS 基础 1 概述 前述分别在 HTML 基础 和 CSS 基础 中介绍了 HTML、CSS 的基本内容。HTML 定义了网页中包含哪些对象,CSS 定义了对象的显示样式。JavaScript(LiveScript)是一种运行于客户端的解释性脚本语言,使 HTML 页面更具动态…...
代码随想录算法训练营第23天|● 669. 修剪二叉搜索树 ● 108.将有序数组转换为二叉搜索树 ● 538.把二叉搜索树转换为累加树 ● 总结篇
108. 将有序数组转换为二叉搜索树 简单 给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 示例 1: …...
UniApp 中的 u-input 属性讲解
在 UniApp 中,u-input 是一个常用的组件,用于接收用户的输入。它具有多种属性,用于控制输入框的样式和行为。下面我将为您讲解一些常用的 u-input 属性。 基本属性 value:表示输入框的初始值,可以使用 v-model 进行双…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
Debian系统简介
目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版ÿ…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
PL0语法,分析器实现!
简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
