浅用tensorflow天气预测
1.开发环境
(1)Python3.8
(2)Anaconda3
(3)Tensorflow
(4)Numpy
(5)Pandas
(6)Sklearn
先依次安装好上面的软件和包,其中python3.8和Anaconda3是直接下载安装,如果官方链接比较慢,可以搜下三方的源安装。其中Anaconda3不是必须的,用这个工具是因为确实挺香的。
剩下的3-6都是pip安装的包,注意使用Anaconda3的话就在Anaconda Prompt里使用pip命令,如果是其他集成环境或者原生的python环境,直接就在cmd里使用pip安装。
2、实现代码
import numpy as np
import pandas as pd
import tensorflow as tf
from tensorflow.keras import layers
import tensorflow.keras
import warnings
#####################################################
features = pd.read_csv('C:/Inst/20230411/20230411/训练集.csv')
print("数据维度",features.shape)
print('features=')
print(features.head(10))#####################################################
#删除前7行无效数据
features = features[7:]
#将avg列单独存起来
labels_avg = np.array(features['avg'])
print("数据维度",features.shape)
print('features=')
print(features.head(10))#####################################################
#特征中去掉无用标签
features = features.drop('high',axis=1)
features = features.drop('low',axis=1)
features = features.drop('avg',axis=1)
print("数据维度",features.shape)
print('features=')
print(features.head(10))#####################################################
#转换成可以处理的数据格式
features = np.array(features)
#预处理
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
print('input_features=')
print(input_features[0:7])#####################################################
#构造网络模型
model1 = tf.keras.Sequential()
model1.add(layers.Dense(16))
model1.add(layers.Dense(32))
model1.add(layers.Dense(1))
#对网络进行配置
model1.compile(optimizer=tf.keras.optimizers.SGD(0.001),loss='mean_squared_error')#####################################################
#训练
model1.fit(input_features, labels_avg, validation_split=0.1, epochs=50, batch_size=64)#####################################################
#读入待预测数据
tobe_predict = pd.read_csv('C:/Inst/20230411/20230411/验证集.csv')
#去除前7行数据
tobe_predict = tobe_predict[7:]
#vag列先存起来,后面用来比较验证预测的效果
tobe_predict_avg = np.array(tobe_predict['avg'])
#去掉无用的列
tobe_predict = tobe_predict.drop('avg',axis=1)
tobe_predict = tobe_predict.drop('high',axis=1)
tobe_predict = tobe_predict.drop('low',axis=1)#转换成合适的格式
tobe_predict = np.array(tobe_predict)print("数据维度",tobe_predict.shape)#预处理
tobe_predict = preprocessing.StandardScaler().fit_transform(tobe_predict)
print("tobe_predict=",tobe_predict[0:7])#####################################################
#预测模型结果
predict1 = model1.predict(tobe_predict)
print("预测的平均温度")
print(predict1)print("实际的平均温度")
print(tobe_predict_avg)
相关文章:
浅用tensorflow天气预测
1.开发环境 (1)Python3.8 (2)Anaconda3 (3)Tensorflow (4)Numpy (5)Pandas (6)Sklearn 先依次安装好上面的软件和包…...
基于SpringBoot学生读书笔记共享
摘 要 本论文主要论述了如何使用JAVA语言开发一个读书笔记共享平台 ,本系统将严格按照软件开发流程进行各个阶段的工作,采用B/S架构,面向对象编程思想进行项目开发。在引言中,作者将论述读书笔记共享平台的当前背景以及系统开发的…...
设计模式之装饰模式(2)--有意思的想法
目录 背景概述概念角色 基本代码分析❀❀花样重难点聚合关系认贼作父和认孙做父客户端的优化及好处继承到设计模式的演变过程 总结 背景 这是我第二次写装饰模式,这一次是在上一次的基础上进一步探究装饰模式,这一次有了很多新的感受和想法,也…...
深入了解 Pinia:现代 Vue 应用的状态管理利器
🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云…...
TTS声音合成:paddlespeech、sherpa-onnx、coqui-ai
1、百度TTS文本合成语音 参考: https://aistudio.baidu.com/aistudio/projectdetail/5237474 https://www.jianshu.com/p/a7522ca6dec4 https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/demos/text_to_speech/README_cn.md 1)过程中需要下载的TTS 声学相关模型…...
Android frameworks 开发总结之十一
1.查看android关机前的log 有时候我们在没有连接电脑的情况下,会在测试的时候突然机器关机. 这个时候如果查看 log信息就看不到了。测试前可以执行下面的命令,之后再进行测试. $ adb shell $ nohup logcat > /sdcard/xxx.log 2.android日期时间同步 关于…...
抑制过拟合——Dropout原理
抑制过拟合——Dropout原理 Dropout的工作原理 实验观察 在机器学习领域,尤其是当我们处理复杂的模型和有限的训练样本时,一个常见的问题是过拟合。简而言之,过拟合发生在模型对训练数据学得太好,以至于它捕捉到了数据中的噪声和…...
开发板启动进入系统以后再挂载 NFS 文件系统, 这里的NFS文件系统是根据正点原子教程制作的ubuntu_rootfs
如果是想开发板启动进入系统以后再挂载 NFS 文件系统,开发板启动进入文件系统,开发板和 ubuntu 能互相 ping 通,在开发板文件系统下新建一个目录 you,然后执行如下指令进行挂载: mkdir mi mount -t nfs -o nolock,nfsv…...
Ubuntu系统执行“docker ps“出现“permission denied“
当我们安装好Ubuntu时,使用鱼香ros一键安装指令 wget http://fishros.com/install -O fishros && . fishros 一键安装Docker后,执行"docker ps"出现"permission denied" seelina:~$ docker ps permission denied while …...
Python与设计模式--桥梁模式
23种计模式之 前言 (5)单例模式、工厂模式、简单工厂模式、抽象工厂模式、建造者模式、原型模式、(7)代理模式、装饰器模式、适配器模式、门面模式、组合模式、享元模式、桥梁模式、(11)策略模式、责任链模式、命令模式、中介者模…...
Linux下查看目录大小
查看目录大小 Linux下查看当前目录大小,可用一下命令: du -h --max-depth1它会从下到大的显示文件的大小。...
鸿蒙原生应用/元服务开发-AGC分发如何下载管理Profile
一、收到通知 尊敬的开发者: 您好,为支撑鸿蒙生态发展,HUAWEI AppGallery Connect已于X月XX日完成存量HarmonyOS应用/元服务的Profile文件更新,更新后Profile文件中已扩展App ID信息;后续上架流程会检测API9以上Harm…...
解决warning: #188-D: enumerated type mixed with another type问题
出现问题处如下, 指示在代码的某处将枚举类型与另一种类型混合使用,这种警告通常在将枚举类型与其他类型进行操作或赋值时出现 enum Mode {MODE_IDLE,MODE_1,MODE_2,MODE_3,MODE_4, }; enum Mode currentMode MODE_IDLE;currentMode (currentMode 1)…...
docker的知识点,以及使用
Docker 是一个开源的应用容器引擎,可以让开发者将应用程序及其依赖项打包至一个可移植的容器中,从而实现快速部署、可扩展和依赖项隔离等特性。下面是 Docker 的一些知识点以及使用方法: Docker 的组成部分包括 Docker 引擎、Docker 镜像、Do…...
WTM(基于Blazor)问题处理记录
问题描述一 有个需求,需要访问内网网络共享文件夹中的文件,有域控限制。 一开始直接在本地映射一个网络驱动器,然后像本地磁盘一样访问共享文件夹里的文件,比如:Y:\ 。 然后直接在程序中访问共享文件夹中的文件,如下代码: DirectoryInfo directoryInfo = new Direct…...
ubuntu 安装 towhee
安装Towhee pip3 install towhee如果你想在 towhee 中安装模型 pip3 install towhee.models打开python终端 python3引入towhee 数据转换是 Towhee 的核心;管道只是在有向无环图中连接在一起的一系列转换。所有预构建的 Towhee 管道都有代表当前任务的名称。 fr…...
ERP软件对Oracle安全产品的支持
这里的ERP软件仅指SAP ECC和Oracle EBS。 先来看Oracle EBS: EBS的认证查询方式,和数据库认证是一样的。这个体验到时不错。 结果中和安全相关的有: Oracle Database VaultTransparent Data Encryption TDE被支持很容易理解,…...
Linux 基础-常用的命令和搭建 Java 部署环境
文章目录 目录相关查看目录中的内容查看目录当前的完整路径切换目录 文件相关创建文件查看文件内容写文件vim 基础 创建删除创建目录 移动和复制移动(剪切粘贴)复制(复制粘贴) 搭建 Java 部署环境1. 安装 jdk2. 安装 tomcat1). 我们在自己电脑上下好 tomcat2). 从官网下载的 .z…...
c语言总结(解题方法)
项目前期处理: 1.首先需要确定项目的背景知识,即主要的难点知识,如指针,数组,结构体,以检索自己是否对项目所需的背景知识足够了解。 2.确定问题实现方法,即题目本身的实现方法,在c语…...
Webpack的ts的配置详细教程
文章目录 前言ts是什么?基础配置LoaderSource MapsClient types使用第三方类库导入其他资源 后言 前言 hello world欢迎来到前端的新世界 😜当前文章系列专栏:webpack 🐱👓博主在前端领域还有很多知识和技术需要掌握…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
基于Flask实现的医疗保险欺诈识别监测模型
基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施,由雇主和个人按一定比例缴纳保险费,建立社会医疗保险基金,支付雇员医疗费用的一种医疗保险制度, 它是促进社会文明和进步的…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)
上一章用到了V2 的概念,其实 Fiori当中还有 V4,咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务),代理中间件(ui5-middleware-simpleproxy)-CSDN博客…...
