当前位置: 首页 > news >正文

旋转框(obb)目标检测计算iou的方法

首先先定义一组多边形,这里的数据来自前后帧的检测结果

 pre = [[[860.0, 374.0], [823.38, 435.23], [716.38, 371.23], [753.0, 310.0]],[[829.0, 465.0], [826.22, 544.01], [684.0, 539.0], [686.78, 459.99]],[[885.72, 574.95], [891.0, 648.0], [725.0, 660.0], [719.72, 586.95]],[[1164.0, 406.0], [1101.05, 410.72], [1095.0, 330.0], [1157.95, 325.28]],[[953.04, 102.78], [955.04, 138.78], [915.0, 141.0], [913.0, 105.0]],[[1173.0, 524.0], [1104.0, 524.0], [1104.0, 437.0], [1173.0, 437.0]],[[879.0, 297.0], [831.45, 340.49], [756.0, 258.0], [803.55, 214.51]],[[1136.79, 226.81], [1176.33, 263.31], [1111.54, 333.5], [1072.0, 297.0]],[[835.42, 225.76], [790.0, 251.0], [750.66, 180.19], [796.08, 154.95]],[[887.0, 196.0], [839.04, 208.16], [821.0, 137.0], [868.96, 124.84]],[[1033.0, 109.0], [1027.07, 142.01], [988.0, 135.0], [993.93, 101.99]],[[1056.0, 83.0], [1093.09, 90.53], [1080.0, 155.0], [1042.91, 147.47]],[[1064.01, 155.84], [1104.0, 158.0], [1099.99, 232.16], [1060.0, 230.0]],[[1087.06, 118.88], [1124.0, 137.0], [1097.94, 190.12], [1061.0, 172.0]]]post = [[[860.44, 373.25], [825.0, 434.0], [716.56, 370.75], [752.0, 310.0]],[[829.0, 466.0], [825.64, 545.03], [684.64, 539.03], [688.0, 460.0]],[[884.04, 575.0], [889.0, 649.0], [724.96, 660.0], [720.0, 586.0]],[[1163.0, 406.0], [1100.0, 410.0], [1094.92, 329.94], [1157.92, 325.94]],[[953.0, 103.0], [955.56, 137.96], [914.56, 140.96], [912.0, 106.0]],[[1173.0, 524.0], [1104.0, 524.0], [1104.0, 438.0], [1173.0, 438.0]],[[880.0, 297.0], [831.0, 342.0], [755.34, 259.61], [804.34, 214.61]],[[1137.31, 226.66], [1177.0, 263.0], [1112.0, 334.0], [1072.31, 297.66]],[[887.06, 194.23], [840.0, 207.0], [820.94, 136.77], [868.0, 124.0]],[[836.69, 224.57], [792.69, 251.57], [750.0, 182.0], [794.0, 155.0]],[[1033.0, 106.0], [1030.0, 143.0], [987.95, 139.59], [990.95, 102.59]],[[1055.95, 83.27], [1094.0, 91.0], [1081.0, 155.0], [1042.95, 147.27]],[[1064.0, 155.0], [1105.02, 156.05], [1103.02, 234.05], [1062.0, 233.0]],[[1081.72, 120.74], [1120.0, 135.0], [1101.0, 186.0], [1062.72, 171.74]]]

其中的每个列表元素代表一个多边形,列表中包含四个元素,分别代表多边形的顶点坐标

    import numpy as npimport cv2# 创建一个全白图像image = np.ones((1080, 1920, 3), dtype=np.uint8) * 255for i, poly in enumerate(pre):polygon_list = np.array(poly, np.int32)cv2.drawContours(image, contours=[polygon_list], contourIdx=-1, color=(0, 0, 255), thickness=2)for i, poly in enumerate(post):polygon_list = np.array(poly, np.int32)cv2.drawContours(image, contours=[polygon_list], contourIdx=-1, color=(255, 0, 0), thickness=2)cv2.imshow("Image", image)cv2.waitKey(0)cv2.destroyAllWindows()

用opencv将这些坐标画出来:

方法一

使用opencv内置函数计算iou

    def bbox_overlaps(boxes, query_boxes):""" Calculate IoU(intersection-over-union) and angle difference for each input boxes and query_boxes. """if isinstance(boxes, list):boxes = np.array(boxes)if isinstance(query_boxes, list):query_boxes = np.array(query_boxes)N = boxes.shape[0]K = query_boxes.shape[0]boxes = np.round(boxes, decimals=2)query_boxes = np.round(query_boxes, decimals=2)overlaps = np.reshape(np.zeros((N, K)), (N, K))delta_theta = np.reshape(np.zeros((N, K)), (N, K))for k in range(K):rect1 = ((query_boxes[k][0], query_boxes[k][1]),(query_boxes[k][2], query_boxes[k][3]),query_boxes[k][4])for n in range(N):rect2 = ((boxes[n][0], boxes[n][1]),(boxes[n][2], boxes[n][3]),boxes[n][4])# can check official document of opencv for detailsnum_int, points = cv2.rotatedRectangleIntersection(rect1, rect2)S1 = query_boxes[k][2] * query_boxes[k][3]S2 = boxes[n][2] * boxes[n][3]if num_int == 1 and len(points) > 2:s = cv2.contourArea(cv2.convexHull(points, returnPoints=True))overlaps[n][k] = s / (S1 + S2 - s)elif num_int == 2:overlaps[n][k] = min(S1, S2) / max(S1, S2)delta_theta[n][k] = np.abs(query_boxes[k][4] - boxes[n][4])return overlaps, delta_thetaoverlaps = bbox_overlaps(np.array(pre).reshape(-1,8),np.array(post).reshape(-1,8))[0]print(overlaps)

运行结果如下: 

可以看到其中存在一些异常值,就是有些明明没有交集的部分也会产生比较高的iou值

方法二

使用shapely

    from shapely.geometry import Polygondef calculate_iou(poly1, poly2):# 计算两个多边形的交集面积intersection_area = calculate_intersection(poly1, poly2)# 计算两个多边形的并集面积union_area = calculate_union(poly1, poly2)# 计算IoU值iou = intersection_area / union_areareturn ioudef calculate_intersection(poly1, poly2):# 计算多边形的交集面积# 这里使用你选择的多边形交集计算方法,例如使用Shapely库的intersection()函数intersection = poly1.intersection(poly2)intersection_area = intersection.areareturn intersection_areadef calculate_union(poly1, poly2):# 计算多边形的并集面积# 这里使用你选择的多边形并集计算方法,例如使用Shapely库的union()函数union = poly1.union(poly2)union_area = union.areareturn union_areadef bbox_overlaps_shapely(boxes, query_boxes):""" Calculate IoU(intersection-over-union) and angle difference for each input boxes and query_boxes. """if isinstance(boxes, list):boxes = np.array(boxes)if isinstance(query_boxes, list):query_boxes = np.array(query_boxes)N = boxes.shape[0]K = query_boxes.shape[0]boxes = np.round(boxes, decimals=2)query_boxes = np.round(query_boxes, decimals=2)overlaps = np.reshape(np.zeros((N, K)), (N, K))delta_theta = np.reshape(np.zeros((N, K)), (N, K))for k in range(K):q_box = Polygon(query_boxes[k].reshape(-1, 2).tolist())for n in range(N):d_box = Polygon(boxes[n].reshape(-1, 2).tolist())overlaps[n][k] = calculate_iou(q_box, d_box)return overlaps, delta_thetaoverlaps = bbox_overlaps_shapely(np.array(pre).reshape(-1,8),np.array(post).reshape(-1,8))[0]print(overlaps)

运行结果如下:

可以看到这个结果相比方法一中的结果要更加准确一些 

方法三

cuda内置的函数,需要编译环境,就不展开了

相关文章:

旋转框(obb)目标检测计算iou的方法

首先先定义一组多边形,这里的数据来自前后帧的检测结果 pre [[[860.0, 374.0], [823.38, 435.23], [716.38, 371.23], [753.0, 310.0]],[[829.0, 465.0], [826.22, 544.01], [684.0, 539.0], [686.78, 459.99]],[[885.72, 574.95], [891.0, 648.0], [725.0, 660.0]…...

render函数举例

在这段代码中&#xff0c;renderButton是一个对象吗 还有render为什么不能写成render() {} 代码原文链接 <template><div><renderButton /></div> </template><script setup> import { h, ref } from "vue"; const renderButt…...

微信小程序文件预览和下载-文件系统

文件预览和下载 在下载之前&#xff0c;我们得先调用接口获取文件下载的url 然后通过wx.downloadFile将下载文件资源到本地 wx.downloadFile({url: res.data.url,success: function (res) {console.log(数据,res);} })tempFilePath就是临时临时文件路径。 通过wx.openDocume…...

图解Redis适用场景

Redis以其速度而闻名。 1 业务数据缓存 1.1 通用数据缓存 string&#xff0c;int&#xff0c;list&#xff0c;map。Redis 最常见的用例是缓存对象以加速 Web 应用程序。 此用例中&#xff0c;Redis 将频繁请求的数据存储在内存。允许 Web 服务器快速返回频繁访问的数据。这…...

掌握Python BentoML:构建、部署和管理机器学习模型

更多资料获取 &#x1f4da; 个人网站&#xff1a;ipengtao.com BentoML是一个开源的Python框架&#xff0c;旨在简化机器学习模型的打包、部署和管理。本文将深入介绍BentoML的功能和用法&#xff0c;提供详细的示例代码和解释&#xff0c;帮助你更好地理解和应用这个强大的工…...

西南科技大学模拟电子技术实验二(二极管特性测试及其应用电路)预习报告

目录 一、计算/设计过程 二、画出并填写实验指导书上的预表 三、画出并填写实验指导书上的虚表 四、粘贴原理仿真、工程仿真截图 一、计算/设计过程 说明:本实验是验证性实验,计算预测验证结果。是设计性实验一定要从系统指标计算出元件参数过程,越详细越好。用公式输入…...

熟悉SVN基本操作-(SVN相关介绍使用以及冲突解决)

一、SVN相关介绍 1、SVN是什么? 代码版本管理工具它能记住你每次的修改查看所有的修改记录恢复到任何历史版本恢复已经删除的文件 2、SVN跟Git比&#xff0c;有什么优势 使用简单&#xff0c;上手快目录级权限控制&#xff0c;企业安全必备子目录checkout&#xff0c;减少…...

代码随想录二刷 |字符串 |反转字符串II

代码随想录二刷 &#xff5c;字符串 &#xff5c;反转字符串II 题目描述解题思路 & 代码实现 题目描述 541.反转字符串II 给定一个字符串 s 和一个整数 k&#xff0c;从字符串开头算起&#xff0c;每计数至 2k 个字符&#xff0c;就反转这 2k 字符中的前 k 个字符。 如果…...

哪吒汽车拔头筹,造车新势力首家泰国工厂投产

中国造车新势力首家泰国工厂投产&#xff01;11月30日&#xff0c;哪吒汽车位于泰国的首家海外工厂——泰国生态智慧工厂正式投产下线新车&#xff0c;哪吒汽车联合创始人兼CEO张勇、哪吒汽车泰国合作伙伴BGAC公司首席执行官万查曾颂翁蓬素等出席仪式。首辆“泰国制造”的哪吒汽…...

Redis String类型

String 类型是 Redis 最基本的数据类型&#xff0c;String 类型在 Redis 内部使用动态长度数组实现&#xff0c;Redis 在存储数据时会根据数据的大小动态地调整数组的长度。Redis 中字符串类型的值最大可以达到 512 MB。 关于字符串需要特别注意∶ 首先&#xff0c;Redis 中所…...

lxd提权

lxd/lxc提权 漏洞介绍 lxd是一个root进程&#xff0c;它可以负责执行任意用户的lxd&#xff0c;unix套接字写入访问操作。而且在一些情况下&#xff0c;lxd不会调用它的用户权限进行检查和匹配 原理可以理解为用用户创建一个容器&#xff0c;再用容器挂载宿主机磁盘&#xf…...

Ubuntu+Tesla V100环境配置

系统基本信息 nvidia-smi’ nvidia-smi 470.182.03 driver version:470.182.03 cuda version: 11.4 查看系统体系结构 uname -aUTC 2023 x86_64 x86_64 x86_64 GNU/Linux 下载miniconda https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/?CM&OA https://mi…...

leetcode:用栈实现队列(先进先出)

题目描述 题目链接&#xff1a;232. 用栈实现队列 - 力扣&#xff08;LeetCode&#xff09; 题目分析 我们先把之前写的数组栈的实现代码搬过来 用栈实现队列最主要的是实现队列先进先出的特点&#xff0c;而栈的特点是后进先出&#xff0c;那么我们可以用两个栈来实现&…...

<JavaEE> 什么是进程控制块(PCB Process Control Block)?

目录 一、进程控制块的概念 二、进程控制块的重要属性 2.1 唯一身份标识&#xff08;PID&#xff09; 2.2 内存指针 2.3 文件描述符表 2.4 状态 2.5 优先级 2.6 记账信息 2.7 上下文 一、进程控制块的概念 进程控制块&#xff08;Process Control Block, PCB&#xff…...

简历上的工作经历怎么写

通过了简历筛选&#xff0c;后续的面试官会仔细阅读你的简历内容。他们在找什么呢&#xff1f;他们希望搞清楚你在某一段经历中具体干了什么&#xff0c;并且判断你的能力具体达到了什么水平。 简历在线制作下载&#xff1a;百度幻主简历 面试官喜欢具体的经历 越具体&#x…...

数值分析总结

数值分析总结思维导图 Docs 相关代码的使用和注释 列主元Gauss消元法 %%列主元高斯消元法 function xGauss_lzy(A,b)%A为方程组系数矩阵&#xff0c;b为方程组的右侧向量&#xff0c;x为方程组的解 [n,m]size(A);%%得到矩阵A的行和列的宽度 nblength(b);%%方程组右侧向量的长…...

osg demo汇总

1.example_osganimate 演示了路径动画的使用&#xff08;AnimationPath、AnimationPathCallback&#xff09;&#xff0c;路径动画回调能够做用在Camera、CameraView、MatrixTransform、PositionAttitudeTransform等四种类型的节点上。 演示了osgSim::OverlayNode的使用node 2…...

Leetcode.1590 使数组和能被 P 整除

题目链接 Leetcode.1590 使数组和能被 P 整除 rating : 2039 题目描述 给你一个正整数数组 n u m s nums nums&#xff0c;请你移除 最短 子数组&#xff08;可以为 空&#xff09;&#xff0c;使得剩余元素的 和 能被 p p p 整除。 不允许 将整个数组都移除。 请你返回你需…...

uniappios请求打开麦克风 uniapp发起请求

第一种 ajax请求方式 uni.request(OBJECT) 参数名类型必填默认值说明平台差异说明urlString是开发者服务器接口地址dataObject/String/ArrayBuffer否请求的参数App(自定义组件编译模式)不支持ArrayBuffer类型headerObject否设置请求的 header,header 中不能设置 Referer。…...

Java 注解在 Android 中的使用场景

Java 元注解有 5 种&#xff0c;常用的是 Target 和 Retention 两个。 其中 Retention 表示保留级别&#xff0c;有三种&#xff1a; RetentionPolicy.SOURCE - 标记的注解仅保留在源码级别中&#xff0c;并被编译器忽略RetentionPolicy.CLASS - 标记的注解在编译时由编译器保…...

【开源】基于Vue和SpringBoot的数字化社区网格管理系统

项目编号&#xff1a; S 042 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S042&#xff0c;文末获取源码。} 项目编号&#xff1a;S042&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、开发背景四、系统展示五、核心源码5…...

Go语言简要介绍

Golang是一种编程语言&#xff0c;也称为Go或者Go语言。它是由Google开发的一种编译型、静态类型的语言。Golang的目标是提高程序开发的效率&#xff0c;同时保证程序的性能和安全。 Golang在语法结构上类似于C语言&#xff0c;但是通过引入新的概念和语法&#xff0c;比如gor…...

STM32H7 RTC及PC13问题

程序加了RTC时间过后&#xff0c;发现原本的RTC定时唤醒中断也不好使了&#xff0c;开始以为是PC13入侵检测引脚问题&#xff0c;经过测试&#xff0c;发现了一个大问题&#xff0c;当使用 HAL_RTC_SetTime(&hrtc, &time, RTC_FORMAT_BCD); 函数后&#xff0c;RTC变得…...

AntDB“超融合+流式实时数仓”——颠覆50年未变的数据库内核

流式处理引擎&#xff0c;颠覆50年未变的数据库内核 流式处理的概念 2001年9月11日&#xff0c;美国世贸大楼被袭击&#xff0c;美国国防部第一次将“主动预警”纳入国防的宏观战略规划。而IBM作为当时全球最大的IT公司&#xff0c;承担了大量基础支撑软件研发的任务。其中200…...

TZOJ 1376 母牛的故事(递推和递归)

答案1&#xff08;递推&#xff09;&#xff1a; #include<stdio.h> int main() {int n0,i0;int a[55] { 0,1,2,3,4 }; //数组下标就相当于过了几年&#xff0c;以第四年母牛生出的第一只小母牛成年为周期&#xff0c;初始化前四年的值while (scanf("%d", …...

五种多目标优化算法(MOPSO、MOAHA、NSGA2、NSGA3、MOGWO)求解微电网多目标优化调度(MATLAB)

一、多目标优化算法简介 &#xff08;1&#xff09;多目标粒子群优化算法MOPSO 多目标应用&#xff1a;基于多目标粒子群优化算法MOPSO求解微电网多目标优化调度&#xff08;MATLAB代码&#xff09;-CSDN博客 &#xff08;2&#xff09;多目标人工蜂鸟算法&#xff08;MOAHA…...

01_原理-事件循环

01_原理-事件循环 文章目录 01_原理-事件循环一、浏览器的进程模型①&#xff1a;何为进程&#xff1f;②&#xff1a;何为线程&#xff1f;③&#xff1a;浏览器有哪些进程和线程&#xff1f; 二、渲染主线程是如何工作的&#xff1f;三、若干解释①&#xff1a;何为异步&…...

Redis的性能,哨兵模式,集群,

Redis的性能管理; redis的数据保存在内存中 redis-cli info memory redis内存使用info memory命令参数解析 used_memory:236026888 由 Redis 分配器分配的内存总量&#xff0c;包含了redis进程内部的开销和数据占用的内存&#xff0c;以字节&#xff08;byte&#xff09…...

如何选择共模噪声滤波器

在当前电子产品中&#xff0c;绝大多数的高速信号都使用地差分对结构。 差分结构有一个好处就是可以降低外界对信号的干扰&#xff0c;但是由于设计的原因&#xff0c;在传输结构上还会受到共模噪声的影响。 共模噪声滤波器就可以用于抑制不必要的共模噪声&#xff0c;而不会对…...

Python与设计模式--模板模式

23种计模式之 前言 &#xff08;5&#xff09;单例模式、工厂模式、简单工厂模式、抽象工厂模式、建造者模式、原型模式、(7)代理模式、装饰器模式、适配器模式、门面模式、组合模式、享元模式、桥梁模式、&#xff08;11&#xff09;策略模式、责任链模式、命令模式、中介者模…...