当前位置: 首页 > news >正文

【PyTorch】(三)模型的创建、参数初始化、保存和加载

文章目录

  • 1. 模型的创建
    • 1.1. 创建方法
      • 1.1.1. 通过使用模型组件
      • 1.1.2. 通过继承nn.Module类
    • 1.2. 模型组件
      • 1.2.1. 网络层
      • 1.2.2. 函数包
      • 1.2.3. 容器
    • 1.3. 将模型转移到GPU
  • 2. 模型参数初始化
  • 3. 模型的保存与加载
    • 3.1. 只保存参数
    • 3.2. 保存模型和参数

1. 模型的创建

1.1. 创建方法

1.1.1. 通过使用模型组件

可以直接使用模型组件快速创建模型。

import torch.nn as nnmodel =	nn.Linear(10, 10),
print(model)

输出结果:

Linear(in_features=10, out_features=10, bias=True)

1.1.2. 通过继承nn.Module类

在__init__方法中使用模型组件定义模型各层。在forward方法中实现前向传播。

import torch.nn as nnclass Model(nn.Module):def __init__(self):super().__init__()self.layer1 = nn.Linear(10, 10)self.layer2 = nn.Linear(10, 10)self.layer3 = nn.Sequential(nn.Linear(10, 10),nn.ReLU(),nn.Linear(10, 10))def forward(self, x):x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)return xmodel = Model()
print(model)

输出结果:

Model((layer1): Linear(in_features=10, out_features=10, bias=True)(layer2): Linear(in_features=10, out_features=10, bias=True)(layer3): Sequential((0): Linear(in_features=10, out_features=10, bias=True)(1): ReLU()(2): Linear(in_features=10, out_features=10, bias=True))
)

1.2. 模型组件

1.2.1. 网络层

1.2.2. 函数包

1.2.3. 容器

1.3. 将模型转移到GPU

方法与将数据转移到GPU类似,都有两种方法:

  1. model.to(device)
  2. mode.cuda()
import torch
import torch.nn as nn# 创建模型实例
model = nn.Sequential(nn.Linear(10, 10),nn.ReLU(),nn.Linear(10, 10)
)# 将模型移动到GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
# 也可以
model = model.cuda()

2. 模型参数初始化

3. 模型的保存与加载

模型保存和加载使用的python内置的pickle模块。

3.1. 只保存参数

import torch
import torch.nn as nn# 创建模型实例
model1 = nn.Sequential(nn.Linear(10, 10),nn.ReLU(),nn.Linear(10, 10)
)# 保存和加载参数
torch.save(model1.state_dict(), '../model/model_params.pkl')
model1.load_state_dict(torch.load('../model/model_params.pkl'))

3.2. 保存模型和参数

import torch
import torch.nn as nn# 创建模型实例
model1 = nn.Sequential(nn.Linear(10, 10),nn.ReLU(),nn.Linear(10, 10)
)# 保存和加载模型和参数
torch.save(model1, '../model/model.pt')
model2 = torch.load('../model/model.pt')
print(model2)

相关文章:

【PyTorch】(三)模型的创建、参数初始化、保存和加载

文章目录 1. 模型的创建1.1. 创建方法1.1.1. 通过使用模型组件1.1.2. 通过继承nn.Module类 1.2. 模型组件1.2.1. 网络层1.2.2. 函数包1.2.3. 容器 1.3. 将模型转移到GPU 2. 模型参数初始化3. 模型的保存与加载3.1. 只保存参数3.2. 保存模型和参数 1. 模型的创建 1.1. 创建方法…...

高效开发之:判断复杂list中的对象属性是否包含某个值

技术使用&#xff1a;使用了Java 8引入的Stream API以及Optional类。这些特性用于简化集合的处理和减少空指针异常。 List<ResourceInfoDto> authData chatBase.getData();String baseName dto.getBaseName();Optional<ResourceInfoDto> authWithResourceCode a…...

MacOS + Android Studio 通过 USB 数据线真机调试

环境&#xff1a;Apple M1 MacOS Sonoma 14.1.1 软件&#xff1a;Android Studio Giraffe | 2022.3.1 Patch 3 设备&#xff1a;小米10 Android 13 一、创建测试项目 安卓 HelloWorld 项目: 安卓 HelloWorld 项目 二、数据线连接手机 1. 手机开启开发者模式 参考&#xff1…...

部署jekins遇到的问题

jdk问题 我用的jdk版本是21的结果版本太新了&#xff0c;启动jekins服务的时候总是报错最后在jekins的安装目录下面的jekinsErr.log查看日志发现是jdk问题最后换了一个17版本的就解决了。 unity和jekins jekins和Git源码管理 jekins和Git联动使用 我想让jekins每次打包的时…...

SQLY优化

insert优化 1.批量插入 手动事务提交 主键顺序插入&#xff0c;主键顺序插入性能高于乱序插入 2.大批量插入数据 如果一次性需要插入大批量数据&#xff0c;使用Insert语句插入性能较低&#xff0c;此时可以使用MYSQL数据库提供的load指令进行插入 主键优化 主键设计原则 …...

设计模式——行为型模式(一)

行为型模式用于描述程序在运行时复杂的流程控制,即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务,它涉及算法与对象间职责的分配。 行为型模式分为类行为模式和对象行为模式,前者采用继承机制来在类间分派行为,后者采用组合或聚合在对象间分配行…...

Rust语言入门教程(六) - 字符串类型

在Rust中&#xff0c; 字符串类型其实是一个比较复杂的话题。在Rust的标准库中&#xff0c;至少都提供了6种字符串类型&#xff0c;我们平常使用的最多的是其中的两种。这两种类型互相之间也有所关联&#xff1a; str&#xff1a; 字符串切片String 字符串 其中&#xff0c; 字…...

【MATLAB源码-第92期】基于simulink的QPSK调制解调仿真,采用相干解调对比原始信号和解调信号。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 QPSK&#xff0c;有时也称作四位元PSK、四相位PSK、4-PSK&#xff0c;在坐标图上看是圆上四个对称的点。通过四个相位&#xff0c;QPSK可以编码2位元符号。图中采用格雷码来达到最小位元错误率&#xff08;BER&#xff09; —…...

关于C语言控制浮点数输出精度问题

众所周知 C语言在控制一个浮点数输出精度的时候是在%和f之间加上一个.(想要控制的精度) 如&#xff1a;printf("%.2f", num); 问&#xff0c;试问&#xff1a;&#xff08;你就是我的御主吗&#xff1f;&#xff09;如果输出的精度是根据输入的数字变化的怎么办&am…...

【Linux 静态IP配置】

静态IP配置 1.NAT模式设置2.设置静态ip3.重启网络4.查看ip 1.NAT模式设置 首先设置虚拟机中NAT模式的选项&#xff0c;打开VMware&#xff0c;点击“编辑”下的“虚拟网络编辑器”&#xff0c;设置NAT参数 注意&#xff1a; VMware Network Adapter VMnet8保证是启用状态 …...

【Linux 操作系统配置 SFTP】

Linux 操作系统配置 SFTP sftp采用的是ssh加密隧道&#xff0c;安装性方面较ftp强&#xff0c;而且依赖的是系统自带的ssh服务&#xff0c;不像ftp还需要额外的进行安装基于 ssh 的 sftp 服务相比 ftp 有更好的安全性&#xff08;非明文帐号密码传输&#xff09;和方便的权限管…...

信贷专员简历模板

这份简历内容&#xff0c;以信贷专员招聘需求为背景&#xff0c;我们制作了1份全面、专业且具有参考价值的简历案例&#xff0c;大家可以灵活借鉴。 信贷专员简历在线编辑下载&#xff1a;百度幻主简历 求职意向 求职类型&#xff1a;全职 意向岗位&#xff1a;信贷专员 …...

Python自动化测试面试经典题

相信大家经历过许多面试都会有这样的感受&#xff1a;好不容易通过了 2 -3轮技术面试&#xff0c;但是薪资不够理想&#xff1b;要么被面试的测试专家虐的不要不要的。但每一次的面试也能让自己认识到不足之处&#xff0c;这样才有利于后续拿到理想的offer。 牛鹭学院的学子对…...

java+springboot物流管理系统设计与实现wl-ssmj+jsp

物流管理系统的开发和综合性的物流信息网站平台的建设。研究的重点是运输管理信息系统&#xff0e;本系统是一套基于运输作业流程的管理系统&#xff0c;该系统以运输任务、货品、商务三大线索设计开发。运输任务是该管理系统的核心&#xff0c;系统通过对运输任务中的接收、调…...

概念理论类-k8s :架构篇

转载&#xff1a;新手通俗易懂 k8s &#xff1a;架构篇 Kubernetes&#xff0c;读音是[kubə’netis]&#xff0c;翻译成中文就是“库伯奈踢死”。当然了&#xff0c;也可以直接读它的简称&#xff1a;k8s。为什么把Kubernetes读作k8s&#xff0c;因为Kubernetes中间有8个字母…...

window10家庭版中文转专业版流程

1.确认当前为家庭中文版 2.用管理员权限打开cmd窗口 3.输入 dism /online /get-targeteditions &#xff0c;查询当前支持的升级的版本 4.专业版密钥&#xff1a;VK7JG-NPHTM-C97JM-9MPGT-3V66T 5.changepk.exe /productkey VK7JG-NPHTM-C97JM-9MPGT-3V66T...

Chrome显示分享按钮

分享按钮不见了&#xff01; Chrome://flags Chrome Refresh 2023 Disabled 左上角的标签搜索会到右上角。...

GPTS-生成一个动漫图像GPT

介绍 GPTs是ChatGPT的定制版本,用户可以通过组合指令、知识和功能来定制用于特定任务或主题的GPT。它们可以根据需要简单或复杂,解决从语言学习到技术支持等各种事情。 创建GPTs Plus和Enterprise用户可以在chat.openai.com/create上开始创建GPTs。 您可以通过在ChatGPT上的…...

在gazebo里搭建一个livox mid360 + 惯导仿真平台测试 FAST-LIO2

在gazebo里搭建一个livox mid360 惯导仿真平台测试 FAST-LIO2 前言立方体平台加入 livox mid360 激光雷达加入IMU模块调整底盘大小 并设计调用接口测试 Fast-Lio2 前言 livox mid360 在官网一直没有货&#xff0c;在gazebo里可以仿真该雷达形式的点云。 但是其只发布雷达的数…...

SpringMVC文件下载

<!--解决找不到“jquery-3.4.1.min.js”&#xff08;静态资源访问&#xff09;的问题 --> <mvc:default-servlet-handler/>方式1&#xff1a;如果去掉download就是查看图片 <a href"${pageContext.request.contextPath}/uploadfiles/${requestScope.filena…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来&#xff0c;Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

Java 加密常用的各种算法及其选择

在数字化时代&#xff0c;数据安全至关重要&#xff0c;Java 作为广泛应用的编程语言&#xff0c;提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景&#xff0c;有助于开发者在不同的业务需求中做出正确的选择。​ 一、对称加密算法…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

C++ 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...