当前位置: 首页 > news >正文

全志XR806基于FreeRTOS下部署竞技机器人先进模糊控制器

前言

  • 很荣幸参与到由“极术社区和全志在线联合组织”举办的XR806开发板试用活动。
  • 本人热衷于各种的开发板的开发,同时更愿意将其实现到具体项目中。
  • 秉承以上原则,发现大家的重心都放在开发中的环境构建过程,缺少了不少实际应用场景的运用,虽然环境搭建确实痛苦。本文主要使用XR806的FreeRTOS到实际的机器人控制应用中,并实现部署模糊控制器。
  • 环境搭建本文简要略写,大家可以看社区其它优秀的文章。
  • 文章中应用到的无线控制和多维状态机两个重要的开发应用,会在后面的文章中陆续更新。

使用环境

1.本人使用window10+VMware+ubuntu 18.04 这里不多阐述
2.按照官方文档移植XR806的FreeRTOS

项目介绍

基于XR806——FreeRTOS为项目主控,部署先进模糊控制器,实现对于竞技机器人的机构控制和定位控制等。

在这里插入图片描述
在这里插入图片描述

软硬件框架

在这里插入图片描述

控制部署

继电推理

在封装好电机驱动电流环时,实现对电机的控制,相当于建立了一种
继电特性的非线性控制,此时使用继电整定法的Z-N临界比例度法去建立模糊域。
根据以下临界系数表,整定求出模糊域。

控制器类型KPTnTvKiKd
P0.5*Kμ
PD0.8*Kμ0.12*TμKP*Tn
PI0.45*Kμ0.85*TμKP/Tn
PID0.6*Kμ0.5*Tμ0.12*TμKP/ TnKP*Tn

模糊推理

模糊推理的核心就是计算出E和EC的隶属度。同时把E和EC分为多种子集情况:负最大NB,负中NM,负小NS,零ZO,正小PS,正中PM,正大PB等七种情况。然后计算E/EC种子集的隶属度。

清晰化

进行模糊推理后,可以根据计算的隶属度,建立模糊规则表,实现对输出值的清晰化。对应到应用层的输出函数,实现控制输出。
例图:

在这里插入图片描述

FOC控制

在这里插入图片描述

仿真效果

在这里插入图片描述

在这里插入图片描述

代码实现

以下提供部分代码:

自动整定
void PID_AutoTune_Task(void)
{if(pid.AutoRegurating_Status != START) return;/*定义临界Tc*/float Tc = 0.0;static int start_cnt;  //记录最大值出现的时间static int end_cnt;    //记录周期结束时的时间值 static uint16_t cool_cnt = 0; static uint16_t heat_cnt = 0;//	pid.Autotune_Cnt ++; //计数if((pid.Pv_position == UP) && (pid.Pv < pid.Sv)) {cool_cnt ++;if(cool_cnt >= 3) //连续三次都越过,则说明真的越过了{pid.Pv_position = DOWN; //标记当前在下方了pid.Zero_Across_Cnt ++;	//标记穿越一次cool_cnt = 0;}}else if((pid.Pv_position == DOWN)&&(pid.Pv > pid.Sv))//刚才在下方,现在在上方{heat_cnt++;if(heat_cnt >= 3) //连续三次都越过,则说明真的越过了{pid.Pv_position = UP;   //标记当前在下方了pid.Zero_Across_Cnt ++;	//标记穿越一次heat_cnt = 0;}		}/*****************开始计算强行振荡的周期****************************/	if((pid.Zero_Across_Cnt == 2)&&(start_cnt == 0)){start_cnt = pid.Autotune_Cnt;printf("start_time = %d\r\n", start_cnt);}else if((pid.Zero_Across_Cnt == 4)&&(end_cnt == 0)){end_cnt = pid.Autotune_Cnt;printf("start_time = %d\r\n", end_cnt);}if(pid.Zero_Across_Cnt == 4){	/*计算一个震荡周期的时间*/if(start_cnt > end_cnt)Tc = (start_cnt-end_cnt)/2;  elseTc = (end_cnt-start_cnt)/2;  /*计算Kp,Ti和Td*/pid.Kp = 0.6*pid.Kp;pid.Ti = Tc*0.5;   pid.Td = Tc*0.12;  /*PID参数整定完成,将各项数据清0*/heat_cnt 	= 0;cool_cnt 	= 0;	pid.Autotune_Cnt = 0;start_cnt	= 0;end_cnt		= 0;	pid.SEk   = 0;pid.Zero_Across_Cnt 			= 0;					pid.AutoRegurating_EN 		= OFF;pid.AutoRegurating_Status = OVER; //开始运行使用新的参数后的PID算法pid.Sv   = pid.BKSv;    }
}	
模糊控制
/*模糊规则表*/
int KpRule[7][7]= {  /*NB, NM,  NS, ZO, PS, PM, PB -EC*/{1,   1,   1,  1,  1,  1,  1}, //NB 0~-10{0,   0,   0,  1,  2,  3,  4}, //NM 0~10{0,   0,   0,  1,  2,  3,  4}, //NS 10~20   {0,   0,   1,  1,  2,  3,  4}, //20~30{1,   1,   1,  1,  2,  3,  4}, //30~40{1,   1,   1,  1,  2,  3,  4}, //40 ~50{6,   6,   6,  6,  6,  6,  6}, //50~60       
};
static float fuzzy_kp(float err, float errchange) 
{                 volatile float Kp_calcu;  volatile uint8_t num,pe,pec;   volatile float eFuzzy[2]={0.0,0.0};      //隶属于误差E的隶属程度  volatile float ecFuzzy[2]={0.0,0.0};     //隶属于误差变化率EC的隶属程度  float KpFuzzy[7]={0.0,0.0,0.0,0.0,0.0,0.0,0.0}; //隶属于Kp的隶属程度  /*****误差E隶属函数描述*****/ if(err<eRule[0])         {   eFuzzy[0] =1.0;    pe = 0;  }  else if(eRule[0]<=err && err<eRule[1])  {   eFuzzy[0] = (eRule[1]-err)/(eRule[1]-eRule[0]);   pe = 0;  }  else if(eRule[1]<=err && err<eRule[2])  {   eFuzzy[0] = (eRule[2] -err)/(eRule[2]-eRule[1]);   pe = 1;  }  else if(eRule[2]<=err && err<eRule[3])  { eFuzzy[0] = (eRule[3] -err)/(eRule[3]-eRule[2]);   pe = 2;  }     else if(eRule[3]<=err && err<eRule[4])     {   eFuzzy[0] = (eRule[4]-err)/(eRule[4]-eRule[3]);         pe = 3;     }  else if(eRule[4]<=err && err<eRule[5])  {   eFuzzy[0] = (eRule[5]-err)/(eRule[5]-eRule[4]);   pe = 4;  }  else if(eRule[5]<=err && err<eRule[6])  {   eFuzzy[0] = (eRule[6]-err)/(eRule[6]-eRule[5]);   pe = 5;  }  else  {   eFuzzy[0] =	0.0;   pe =	6;  }    eFuzzy[1] =1.0 - eFuzzy[0];  /*****误差变化率EC隶属函数描述*****/       if(errchange<ecRule[0])         {   ecFuzzy[0] =1.0;   pec = 0;  }  else if(ecRule[0]<=errchange && errchange<ecRule[1])  {   ecFuzzy[0] = (ecRule[1] - errchange)/(ecRule[1]-ecRule[0]);   pec = 0 ;  }  else if(ecRule[1]<=errchange && errchange<ecRule[2])  {   ecFuzzy[0] = (ecRule[2] - errchange)/(ecRule[2]-ecRule[1]);   pec = 1;  }  else if(ecRule[2]<=errchange && errchange<ecRule[3])  {   ecFuzzy[0] = (ecRule[3] - errchange)/(ecRule[3]-ecRule[2]);   pec = 2 ;  } else if(ecRule[3]<=errchange && errchange<ecRule[4])     {   ecFuzzy[0] = (ecRule[4]-errchange)/(ecRule[4]-ecRule[3]);         pec=3;     }  else if(ecRule[4]<=errchange && errchange<ecRule[5])     {   ecFuzzy[0] = (ecRule[5]-errchange)/(ecRule[5]-ecRule[4]);         pec=4;     }  else if(ecRule[5]<=errchange && errchange<ecRule[6])     {   ecFuzzy[0] = (ecRule[6]-errchange)/(ecRule[6]-ecRule[5]);         pec=5;     }  else  {   ecFuzzy[0] =0.0;   pec = 5;  }  ecFuzzy[1] = 1.0 - ecFuzzy[0];   /*********查询模糊规则表*********/     num =	KpRule[pe][pec];  KpFuzzy[num] += (eFuzzy[0]*ecFuzzy[0]); num =	KpRule[pe][pec+1];   KpFuzzy[num] += (eFuzzy[0]*ecFuzzy[1]);  num =KpRule[pe+1][pec];  KpFuzzy[num] += (eFuzzy[1]*ecFuzzy[0]);  	num =	KpRule[pe+1][pec+1];  KpFuzzy[num] += (eFuzzy[1]*ecFuzzy[1]); /*********加权平均法解模糊*********/    Kp_calcu	=	KpFuzzy[0]*kpRule[0] +KpFuzzy[1]*kpRule[1]+ \KpFuzzy[2]*kpRule[2] +KpFuzzy[3]*kpRule[3]+ \KpFuzzy[4]*kpRule[4] +KpFuzzy[5]*kpRule[5]+ \+KpFuzzy[6]*kpRule[6];   printf(" %f,%f,%d,%d,kp = %f\r\n", err, errchange, pe, pec, Kp_calcu);return(Kp_calcu); 
} 

实物展示

无刷电机控制

https://www.bilibili.com/video/BV1FN4y1C7fY/?aid=874778769&cid=1302701130&page=null

整体定位控制

https://www.bilibili.com/video/BV1NN411t7Fy/?aid=492262076&cid=1302702003&page=null

以上,就是本文分享的全部内容了,感谢各位

相关文章:

全志XR806基于FreeRTOS下部署竞技机器人先进模糊控制器

前言 很荣幸参与到由“极术社区和全志在线联合组织”举办的XR806开发板试用活动。本人热衷于各种的开发板的开发&#xff0c;同时更愿意将其实现到具体项目中。秉承以上原则&#xff0c;发现大家的重心都放在开发中的环境构建过程&#xff0c;缺少了不少实际应用场景的运用&am…...

python动态加载内容抓取问题的解决实例

问题背景 在网页抓取过程中&#xff0c;动态加载的内容通常无法通过传统的爬虫工具直接获取&#xff0c;这给爬虫程序的编写带来了一定的技术挑战。腾讯新闻&#xff08;https://news.qq.com/&#xff09;作为一个典型的动态网页&#xff0c;展现了这一挑战。 问题分析 动态…...

系列二十三、将一个第三方的类配置成bean的方式

一、将一个第三方的类配置成bean的方式 1.1、概述 日常的JavaEE开发中&#xff0c;难免不会遇到需要使用第三方的类的情况&#xff0c;比如&#xff1a;MyBatisPlus、RedisTemplate、DruidDataSource...&#xff0c;这些外部组件是不同的组织或个人提供的&#xff0c;我们为什…...

【长文干货】Python可视化教程

文章目录 数据介绍Matplotlib散点图折线图柱形图直方图 Seaborn散点图折线图柱形图直方图 Bokeh散点图折线条形图交互式 Plotly基本组合优化&#xff1a;定制化下拉菜单 总结 数据介绍 在这个小费数据集中&#xff0c;我们记录了20世纪90年代初期餐厅顾客在两个半月内给出的小…...

软件工程--需求工程--学习笔记(超详细)

软件需求工程是软件开发周期的第一个阶段&#xff0c;也是关系到软件开发成败最关键阶段&#xff0c;本章讲解需求的基础知识和需求工程的关键活动。这些知识对于结构化方法、面向对象方法、面向服务方法等都是适用的 本文参考教材&#xff1a;沈备军老师的《软件工程原理》 目…...

TemplateHit中提取query和hit比对上序列索引的映射字典

template_hits(Sequence[TemplateHit]数据格式)来自结构数据库搜索结果 python运行hhsearch二进制命令的包装器类 映射索引计算&#xff1a;TemplateHit 中含有 indices_query&#xff0c;需要换算成在原始query序列中的index&#xff0c;hit 中indices_hit 需要减去最小index…...

富必达API:一站式无代码开发集成电商平台、CRM和营销系统

一站式无代码开发的连接解决方案 电子商务、客户服务系统以及其它商业应用&#xff0c;是现代企业运营的重要部分。然而&#xff0c;将这些系统进行有效的整合往往需要复杂的API开发&#xff0c;这对很多企业来说是一个巨大的挑战。富必达API以其一站式的无代码开发解决方案&a…...

聊聊接口最大并发处理数

文章目录 前言并发和并行并发&#xff08;Concurrency&#xff09;并行&#xff08;Parallelism&#xff09;思考一下 前言 生活在 2023 年的互联网时代下&#xff0c;又是在国内互联网越发内卷的背景下&#xff0c;相信大家面试找工作、网上学习查资料时都了解过互联网系统设…...

6.如何利用LIO-SAM生成可用于机器人/无人机导航的二维/三维栅格地图--以octomap为例

目录 1 octomap的安装 2 二维导航节点的建立及栅格地图的构建 3 三维栅格地图的建立 1 octomap的安装 这里采用命令安装&#xff1a; sudo apt install ros-melodic-octomap-msgs ros-melodic-octomap-ros ros-melodic-octomap-rviz-plugins ros-melodic-octomap-server 这样…...

【多传感器融合】BEVFusion: 激光雷达和视觉融合框架 NeurIPS 2022

前言 BEVFusion其实有两篇&#xff0c; 【1】BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework. NeurIPS 2022 | 北大&阿里提出 【2】BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird’s-Eye View Representation 2022 | MIT提出 本文先分…...

kafka中的常见问题处理

文章目录 1. 如何防⽌消息丢失2. 如何防⽌重复消费3. 如何做到消息的顺序消费4. 如何解决消息积压问题4.1 消息积压问题的出现4.2 消息积压的解决⽅案 5. 实现延时队列的效果5.1 应用场景5.2 具体方案 1. 如何防⽌消息丢失 ⽣产者&#xff1a;1&#xff09;使⽤同步发送 2&…...

HarmonyOS(八)——@Styles装饰器:定义组件重用样式

前言 在前面我们介绍过Builder装饰器和BuilderParam装饰器。今天我们继续介绍另外一个装饰器——Styles装饰器&#xff1a;定义组件重用样式。 如果每个组件的样式都需要单独设置&#xff0c;在开发过程中会出现大量代码在进行重复样式设置&#xff0c;虽然可以复制粘贴&…...

手写VUE后台管理系统5 - 整合状态管理组件pinia

整合状态管理组件 安装整合创建实例挂载使用 pinia 是一个拥有组合式 API 的 Vue 状态管理库。 pinia 官方文档&#xff1a;https://pinia.vuejs.org/zh/introduction.html 安装 yarn add pinia整合 所有与状态相关的文件都放置于项目 src/store 目录下&#xff0c;方便管理 在…...

解决webpack打包生成gz格式css/js文件没法在nginx使用的问题--全网唯一正确

本文绝对是全网解决这个问题唯一正确的文章&#xff0c;没有之一&#xff01; 很多人都说开启nginx gzip压缩&#xff0c;这些人完全是胡说八道&#xff01;你们到底懂不懂叫gzip压缩啊&#xff1f;&#xff01; 不信你就试试&#xff0c;如果css/js只有gz文件&#xff0c;ng…...

传统算法: Pygame 实现快速排序

使用 Pygame 模块实现了快速排序的动画演示。首先,它生成一个包含随机整数的数组,并通过 Pygame 在屏幕上绘制这个数组的条形图。接着,通过快速排序算法对数组进行排序,动画效果可视化每一步的排序过程。在排序的过程中,程序选择一个基准元素(pivot),将数组分成两部分,…...

HarmonyOS入门开发(三) 持久化存储Preferences

接入鸿蒙几天以来&#xff0c;发现各种和Android不一样的地方&#xff0c;今天来看一下Preferences存储 在Android中比如有ShardPreferences、Mmkv这些持久化存储方式&#xff0c;开发起来很方便&#xff0c;读取速度也很快&#xff0c;在鸿蒙里面也提供了对应的持久化存储方案…...

类和对象——(3)再识对象

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd; 你说那里有你的梦想&#xff0c;…...

【UGUI】实现背包的常用操作

1. 添加物品 首先&#xff0c;你需要一个包含物品信息的类&#xff0c;比如 InventoryItem&#xff1a; using UnityEngine;[CreateAssetMenu(fileName "NewInventoryItem", menuName "Inventory/Item")] public class InventoryItem : ScriptableObje…...

单机zk安装与zk四字命令

一、下载 Apache ZooKeeper可以在 Linux 系统中使用 wget 命令直接下载&#xff0c;官网地址 Apache ZooKeeper 二、解压 tar -zxvf apache-zookeeper-3.8.3-bin.tar.gz 进去解压的目录中&#xff0c; 进入到 zk 解压目录的 conf 目录&#xff0c;复制 zoo_sample.cfg 文件&a…...

matlab导入excel数据两种常见的方法

在MATLAB中导入Excel数据&#xff0c;你可以使用几种不同的方法。下面是两种常见的方法&#xff1a; 方法一&#xff1a;使用readtable函数 readtable函数允许你导入Excel文件中的数据&#xff0c;并将其存储为表格。 % 指定文件路径 filename C:\your\path\to\file.xlsx;%…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

家政维修平台实战20:权限设计

目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系&#xff0c;主要是分成几个表&#xff0c;用户表我们是记录用户的基础信息&#xff0c;包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题&#xff0c;不同的角色&#xf…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

Java线上CPU飙高问题排查全指南

一、引言 在Java应用的线上运行环境中&#xff0c;CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时&#xff0c;通常会导致应用响应缓慢&#xff0c;甚至服务不可用&#xff0c;严重影响用户体验和业务运行。因此&#xff0c;掌握一套科学有效的CPU飙高问题排查方法&…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别

【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而&#xff0c;传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案&#xff0c;能够实现大范围覆盖并远程采集数据。尽管具备这些优势&#xf…...

vulnyx Blogger writeup

信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面&#xff0c;gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress&#xff0c;说明目标所使用的cms是wordpress&#xff0c;访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...